Spaces:
Running
Running
Commit
·
00b33b8
1
Parent(s):
7d4d504
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,123 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
-
from PIL import ImageDraw
|
5 |
-
from PIL import ImageFont
|
6 |
import cv2
|
7 |
import numpy as np
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
+
# from PIL import ImageDraw
|
5 |
+
# from PIL import ImageFont
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
+
import argparse
|
9 |
|
10 |
+
def parse_args(known=False):
|
11 |
+
parser = argparse.ArgumentParser(description="Object Counting v1.0")
|
12 |
+
parser.add_argument(
|
13 |
+
"--yolov5_path",
|
14 |
+
"-yp",
|
15 |
+
default="ultralytics/yolov5",
|
16 |
+
type=str,
|
17 |
+
help="yolov5 path",
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--model_path",
|
21 |
+
"-mp",
|
22 |
+
default="model/yolov5n_rebar_kaggle.pt",
|
23 |
+
type=str,
|
24 |
+
help="model path",
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--nms_conf",
|
28 |
+
"-conf",
|
29 |
+
default=0.25,
|
30 |
+
type=float,
|
31 |
+
help="model NMS confidence threshold",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--nms_iou",
|
35 |
+
"-iou",
|
36 |
+
default=0.1,
|
37 |
+
type=float,
|
38 |
+
help="model NMS IoU threshold"
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--device",
|
42 |
+
"-dev",
|
43 |
+
default="cuda:0",
|
44 |
+
type=str,
|
45 |
+
help="cuda or cpu",
|
46 |
+
)
|
47 |
+
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
|
48 |
+
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
|
49 |
+
|
50 |
+
args = parser.parse_known_args()[0] if known else parser.parse_args()
|
51 |
+
return args
|
52 |
+
|
53 |
+
def image_roi(im):
|
54 |
+
mask = np.array(im["mask"])
|
55 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
56 |
+
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
57 |
+
if contours:
|
58 |
+
mask = np.zeros(mask.shape, np.uint8)
|
59 |
+
cnt = contours[0]
|
60 |
+
mask = cv2.drawContours(mask, [cnt], 0, 255, -1)
|
61 |
+
im = np.array(im["image"])
|
62 |
+
im = cv2.bitwise_and(im, im, mask=mask)
|
63 |
+
im = Image.fromarray(im)
|
64 |
+
else:
|
65 |
+
im = im["image"]
|
66 |
+
return im
|
67 |
+
|
68 |
+
def yolo(im, conf, iou, size):
|
69 |
+
|
70 |
+
global model
|
71 |
+
if im is None:
|
72 |
+
print ("No image")
|
73 |
+
return None, None
|
74 |
+
im = image_roi(im)
|
75 |
+
model.conf = conf
|
76 |
+
model.iou = iou
|
77 |
+
results = model(im, size=size) # custom inference size
|
78 |
+
output_im = np.array(im)
|
79 |
+
|
80 |
+
pred = results.pandas().xyxy[0]
|
81 |
+
counting = pred.shape[0]
|
82 |
+
text = f"{counting} objects"
|
83 |
+
for index, row in pred.iterrows():
|
84 |
+
cv2.circle(output_im, (int((row["xmin"] + row["xmax"]) * 0.5), int((row["ymin"] + row["ymax"]) * 0.5)), int((row["xmax"] - row["xmin"]) * 0.5 * 0.6), (255, 0, 0), -1)
|
85 |
+
|
86 |
+
return Image.fromarray(output_im), text
|
87 |
+
|
88 |
+
|
89 |
+
def main(args):
|
90 |
+
gr.close_all()
|
91 |
+
|
92 |
+
global model
|
93 |
+
yolo_path = args.yolov5_path
|
94 |
+
model_path = args.model_path
|
95 |
+
nms_conf = args.nms_conf
|
96 |
+
nms_iou = args.nms_iou
|
97 |
+
device = args.device
|
98 |
+
inference_size = args.inference_size
|
99 |
+
slider_step = args.slider_step
|
100 |
+
|
101 |
+
model = torch.hub.load(yolo_path, 'custom', path=model_path, device=device)
|
102 |
+
inputs_image = gr.inputs.Image(tool="sketch", label="Original Image",type="pil")
|
103 |
+
inputs_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="Conf Thres")
|
104 |
+
inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU Thres")
|
105 |
+
inputs_size = gr.Slider(384, 1536, step=128, value=inference_size, label="Inference Size")
|
106 |
+
inputs = [inputs_image, inputs_conf, inputs_iou, inputs_size]
|
107 |
+
|
108 |
+
outputs_image = gr.outputs.Image(type="pil", label="Output Image")
|
109 |
+
outputs_text = gr.Textbox(label="Number of objects")
|
110 |
+
outputs = [outputs_image, outputs_text]
|
111 |
+
|
112 |
+
title = "OBJECT COUNTING"
|
113 |
+
description = "Object counting demo. Upload an image or click an example image to use. You can select the area to count by drawing a closed area on the input image."
|
114 |
+
article = "<p style='text-align: center'>Counting objects in image</a></p>"
|
115 |
+
examples = [['./images/S__275668998.jpg'], ['./images/S__275669003.jpg'], ['./images/S__275669004.jpg']]
|
116 |
+
|
117 |
+
gr.Interface(fn=yolo, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False, analytics_enabled=False).launch(
|
118 |
+
debug=True, share=True)
|
119 |
+
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
args = parse_args()
|
123 |
+
main(args)
|