chauhuynh90 commited on
Commit
00b33b8
·
1 Parent(s): 7d4d504

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -57
app.py CHANGED
@@ -1,63 +1,123 @@
1
  import gradio as gr
2
  import torch
3
  from PIL import Image
4
- from PIL import ImageDraw
5
- from PIL import ImageFont
6
  import cv2
7
  import numpy as np
 
8
 
9
- model = torch.hub.load('ultralytics/yolov5', 'custom', path='model/yolov5n_rebar_kaggle.pt')
10
-
11
- def yolo(im, conf, iou, size=640):
12
-
13
- mask = np.array(im["mask"])
14
- mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
15
- contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
16
- if contours:
17
- mask = np.zeros(mask.shape, np.uint8)
18
- cnt = contours[0]
19
- mask = cv2.drawContours(mask, [cnt], 0, 255, -1)
20
- im = np.array(im["image"])
21
- im = cv2.bitwise_and(im, im, mask=mask)
22
- im = Image.fromarray(im)
23
- else:
24
- im = im["image"]
25
-
26
- model.conf = conf
27
- model.iou = iou
28
- results = model(im, size=size) # custom inference size
29
- # inference
30
-
31
- # output_im = Image.fromarray(results.render(labels=False)[0])
32
- # output_im = results.render(labels=False)[0]
33
- output_im = np.array(im)
34
-
35
- pred = results.pandas().xyxy[0]
36
- counting = pred.shape[0]
37
- text = f"{counting} objects"
38
- for index, row in pred.iterrows():
39
- cv2.circle(output_im, (int((row["xmin"] + row["xmax"]) * 0.5), int((row["ymin"] + row["ymax"]) * 0.5)), int((row["xmax"] - row["xmin"]) * 0.5 * 0.6), (255, 0, 0), -1)
40
-
41
- return Image.fromarray(output_im), text
42
-
43
- slider_step = 0.05
44
- nms_conf = 0.25
45
- nms_iou = 0.1
46
- # inputs_image = gr.inputs.Image(type='pil', label="Original Image")
47
- inputs_image = gr.inputs.Image(tool="sketch", label="Original Image",type="pil")
48
- inputs_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="Conf Thres")
49
- inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU Thres")
50
-
51
- inputs = [inputs_image, inputs_conf, inputs_iou]
52
-
53
- outputs_image = gr.outputs.Image(type="pil", label="Output Image")
54
- outputs_text = gr.Textbox(label="Number of objects")
55
- outputs = [outputs_image, outputs_text]
56
-
57
- title = "OBJECT COUNTING"
58
- description = "Object counting demo. Upload an image or click an example image to use. You can select the area to count by drawing a closed area on the input image."
59
- article = "<p style='text-align: center'>Counting objects in image</a></p>"
60
- examples = [['./images/S__275668998.jpg'], ['./images/S__271433737.jpg']]
61
-
62
- gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, cache_examples=False, analytics_enabled=False).launch(
63
- debug=True)#, share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import torch
3
  from PIL import Image
4
+ # from PIL import ImageDraw
5
+ # from PIL import ImageFont
6
  import cv2
7
  import numpy as np
8
+ import argparse
9
 
10
+ def parse_args(known=False):
11
+ parser = argparse.ArgumentParser(description="Object Counting v1.0")
12
+ parser.add_argument(
13
+ "--yolov5_path",
14
+ "-yp",
15
+ default="ultralytics/yolov5",
16
+ type=str,
17
+ help="yolov5 path",
18
+ )
19
+ parser.add_argument(
20
+ "--model_path",
21
+ "-mp",
22
+ default="model/yolov5n_rebar_kaggle.pt",
23
+ type=str,
24
+ help="model path",
25
+ )
26
+ parser.add_argument(
27
+ "--nms_conf",
28
+ "-conf",
29
+ default=0.25,
30
+ type=float,
31
+ help="model NMS confidence threshold",
32
+ )
33
+ parser.add_argument(
34
+ "--nms_iou",
35
+ "-iou",
36
+ default=0.1,
37
+ type=float,
38
+ help="model NMS IoU threshold"
39
+ )
40
+ parser.add_argument(
41
+ "--device",
42
+ "-dev",
43
+ default="cuda:0",
44
+ type=str,
45
+ help="cuda or cpu",
46
+ )
47
+ parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
48
+ parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
49
+
50
+ args = parser.parse_known_args()[0] if known else parser.parse_args()
51
+ return args
52
+
53
+ def image_roi(im):
54
+ mask = np.array(im["mask"])
55
+ mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
56
+ contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
57
+ if contours:
58
+ mask = np.zeros(mask.shape, np.uint8)
59
+ cnt = contours[0]
60
+ mask = cv2.drawContours(mask, [cnt], 0, 255, -1)
61
+ im = np.array(im["image"])
62
+ im = cv2.bitwise_and(im, im, mask=mask)
63
+ im = Image.fromarray(im)
64
+ else:
65
+ im = im["image"]
66
+ return im
67
+
68
+ def yolo(im, conf, iou, size):
69
+
70
+ global model
71
+ if im is None:
72
+ print ("No image")
73
+ return None, None
74
+ im = image_roi(im)
75
+ model.conf = conf
76
+ model.iou = iou
77
+ results = model(im, size=size) # custom inference size
78
+ output_im = np.array(im)
79
+
80
+ pred = results.pandas().xyxy[0]
81
+ counting = pred.shape[0]
82
+ text = f"{counting} objects"
83
+ for index, row in pred.iterrows():
84
+ cv2.circle(output_im, (int((row["xmin"] + row["xmax"]) * 0.5), int((row["ymin"] + row["ymax"]) * 0.5)), int((row["xmax"] - row["xmin"]) * 0.5 * 0.6), (255, 0, 0), -1)
85
+
86
+ return Image.fromarray(output_im), text
87
+
88
+
89
+ def main(args):
90
+ gr.close_all()
91
+
92
+ global model
93
+ yolo_path = args.yolov5_path
94
+ model_path = args.model_path
95
+ nms_conf = args.nms_conf
96
+ nms_iou = args.nms_iou
97
+ device = args.device
98
+ inference_size = args.inference_size
99
+ slider_step = args.slider_step
100
+
101
+ model = torch.hub.load(yolo_path, 'custom', path=model_path, device=device)
102
+ inputs_image = gr.inputs.Image(tool="sketch", label="Original Image",type="pil")
103
+ inputs_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="Conf Thres")
104
+ inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU Thres")
105
+ inputs_size = gr.Slider(384, 1536, step=128, value=inference_size, label="Inference Size")
106
+ inputs = [inputs_image, inputs_conf, inputs_iou, inputs_size]
107
+
108
+ outputs_image = gr.outputs.Image(type="pil", label="Output Image")
109
+ outputs_text = gr.Textbox(label="Number of objects")
110
+ outputs = [outputs_image, outputs_text]
111
+
112
+ title = "OBJECT COUNTING"
113
+ description = "Object counting demo. Upload an image or click an example image to use. You can select the area to count by drawing a closed area on the input image."
114
+ article = "<p style='text-align: center'>Counting objects in image</a></p>"
115
+ examples = [['./images/S__275668998.jpg'], ['./images/S__275669003.jpg'], ['./images/S__275669004.jpg']]
116
+
117
+ gr.Interface(fn=yolo, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False, analytics_enabled=False).launch(
118
+ debug=True, share=True)
119
+
120
+
121
+ if __name__ == "__main__":
122
+ args = parse_args()
123
+ main(args)