Spaces:
Running
Running
Commit
·
d163e81
1
Parent(s):
0a6a2e8
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,58 @@ from PIL import ImageFont
|
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
|
9 |
-
|
10 |
-
return "Hello " + name + "!!"
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
|
9 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5n_rebar_kaggle.pt')
|
|
|
10 |
|
11 |
+
def yolo(im, conf, iou, size=640):
|
12 |
+
|
13 |
+
mask = np.array(im["mask"])
|
14 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
15 |
+
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
16 |
+
if contours:
|
17 |
+
mask = np.zeros(mask.shape, np.uint8)
|
18 |
+
cnt = contours[0]
|
19 |
+
mask = cv2.drawContours(mask, [cnt], 0, 255, -1)
|
20 |
+
im = np.array(im["image"])
|
21 |
+
im = cv2.bitwise_and(im, im, mask=mask)
|
22 |
+
im = Image.fromarray(im)
|
23 |
+
else:
|
24 |
+
im = im["image"]
|
25 |
+
|
26 |
+
model.conf = conf
|
27 |
+
model.iou = iou
|
28 |
+
results = model(im, size=size) # custom inference size
|
29 |
+
# inference
|
30 |
+
|
31 |
+
# output_im = Image.fromarray(results.render(labels=False)[0])
|
32 |
+
# output_im = results.render(labels=False)[0]
|
33 |
+
output_im = np.array(im)
|
34 |
+
|
35 |
+
pred = results.pandas().xyxy[0]
|
36 |
+
counting = pred.shape[0]
|
37 |
+
text = f"{counting} objects"
|
38 |
+
for index, row in pred.iterrows():
|
39 |
+
cv2.circle(output_im, (int((row["xmin"] + row["xmax"]) * 0.5), int((row["ymin"] + row["ymax"]) * 0.5)), int((row["xmax"] - row["xmin"]) * 0.5 * 0.6), (255, 0, 0), -1)
|
40 |
+
|
41 |
+
return Image.fromarray(output_im), text
|
42 |
+
|
43 |
+
slider_step = 0.05
|
44 |
+
nms_conf = 0.25
|
45 |
+
nms_iou = 0.1
|
46 |
+
# inputs_image = gr.inputs.Image(type='pil', label="Original Image")
|
47 |
+
inputs_image = gr.inputs.Image(tool="sketch", label="Original Image",type="pil")
|
48 |
+
inputs_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="Conf Thres")
|
49 |
+
inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU Thres")
|
50 |
+
|
51 |
+
inputs = [inputs_image, inputs_conf, inputs_iou]
|
52 |
+
|
53 |
+
outputs_image = gr.outputs.Image(type="pil", label="Output Image")
|
54 |
+
outputs_text = gr.Textbox(label="Number of objects")
|
55 |
+
outputs = [outputs_image, outputs_text]
|
56 |
+
|
57 |
+
title = "OBJECT COUNTING"
|
58 |
+
description = "Object counting demo. Upload an image or click an example image to use. You can select the area to count by drawing a closed area on the input image."
|
59 |
+
article = "<p style='text-align: center'>Counting objects in image</a></p>"
|
60 |
+
examples = [['S__275668998.jpg']]
|
61 |
+
|
62 |
+
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(
|
63 |
+
debug=True)#, share=True)
|