import gradio as gr import torch from PIL import Image from PIL import ImageDraw from PIL import ImageFont import cv2 import numpy as np model = torch.hub.load('ultralytics/yolov5', 'custom', path='model/yolov5n_rebar_kaggle.pt') def yolo(im, conf, iou, size=640): mask = np.array(im["mask"]) mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if contours: mask = np.zeros(mask.shape, np.uint8) cnt = contours[0] mask = cv2.drawContours(mask, [cnt], 0, 255, -1) im = np.array(im["image"]) im = cv2.bitwise_and(im, im, mask=mask) im = Image.fromarray(im) else: im = im["image"] model.conf = conf model.iou = iou results = model(im, size=size) # custom inference size # inference # output_im = Image.fromarray(results.render(labels=False)[0]) # output_im = results.render(labels=False)[0] output_im = np.array(im) pred = results.pandas().xyxy[0] counting = pred.shape[0] text = f"{counting} objects" for index, row in pred.iterrows(): cv2.circle(output_im, (int((row["xmin"] + row["xmax"]) * 0.5), int((row["ymin"] + row["ymax"]) * 0.5)), int((row["xmax"] - row["xmin"]) * 0.5 * 0.6), (255, 0, 0), -1) return Image.fromarray(output_im), text slider_step = 0.05 nms_conf = 0.25 nms_iou = 0.1 # inputs_image = gr.inputs.Image(type='pil', label="Original Image") inputs_image = gr.inputs.Image(tool="sketch", label="Original Image",type="pil") inputs_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="Conf Thres") inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU Thres") inputs = [inputs_image, inputs_conf, inputs_iou] outputs_image = gr.outputs.Image(type="pil", label="Output Image") outputs_text = gr.Textbox(label="Number of objects") outputs = [outputs_image, outputs_text] title = "OBJECT COUNTING" description = "Object counting demo. Upload an image or click an example image to use. You can select the area to count by drawing a closed area on the input image." article = "

Counting objects in image

" examples = [['./images/S__275668998.jpg'], ['./images/S__271433737.jpg']] gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, cache_examples=False, analytics_enabled=False).launch( debug=True)#, share=True)