ugaray96's picture
Enhance audio processing and search functionality
5692cb3 unverified
import os
import shutil
from inspect import getmembers, isfunction, signature
from io import StringIO
import pandas as pd
import pytesseract
import streamlit as st
from newspaper import Article
from PIL import Image
from PyPDF2 import PdfFileReader
import core.pipelines as pipelines_functions
from core.audio import audio_to_text, load_model
from core.pipelines import data_path
def get_pipelines():
pipeline_names, pipeline_funcs = list(
zip(*getmembers(pipelines_functions, isfunction))
)
pipeline_names = [
" ".join([n.capitalize() for n in name.split("_")]) for name in pipeline_names
]
pipeline_func_parameters = [
{key: value.default for key, value in signature(pipe_func).parameters.items()}
for pipe_func in pipeline_funcs
]
return pipeline_names, pipeline_funcs, pipeline_func_parameters
def reset_vars_data():
st.session_state["doc_id"] = 0
st.session_state["search_results"] = None
# Delete data files
shutil.rmtree(data_path)
os.makedirs(data_path, exist_ok=True)
@st.cache_data
def extract_text_from_url(url: str):
article = Article(url)
article.download()
article.parse()
return article.text
@st.cache_data
def extract_text_from_file(file):
# read text file
if file.type == "text/plain":
# To convert to a string based IO:
stringio = StringIO(file.getvalue().decode("utf-8"))
# To read file as string:
file_text = stringio.read()
return file_text
# read pdf file
elif file.type == "application/pdf":
pdfReader = PdfFileReader(file)
count = pdfReader.numPages
all_text = ""
for i in range(count):
try:
page = pdfReader.getPage(i)
all_text += page.extractText()
except:
continue
file_text = all_text
return file_text
# read csv file
elif file.type == "text/csv":
csv = pd.read_csv(file)
# get columns of type string
string_columns = csv.select_dtypes(include=["object"]).columns
# get data from columns and join it together
file_text = ""
for row in csv[string_columns].values.tolist():
# remove NaNs
row = [x for x in row if str(x) != "nan"]
for column in row:
txt = ""
if isinstance(column, list):
try:
txt = " ".join(column)
except:
continue
elif isinstance(column, str):
txt = column
else:
continue
file_text += " " + txt
return file_text
# read image file (OCR)
elif file.type in ["image/jpeg", "image/png"]:
return pytesseract.image_to_string(Image.open(file))
# read audio file (AudoToText)
elif file.type in ["audio/mpeg", "audio/wav", "audio/aac", "audio/x-m4a"]:
text = audio_to_text(st.session_state["audio_model"], file)
return text
else:
st.warning(f"File type {file.type} not supported")
return None
@st.cache_resource
def load_audio_model():
return load_model()