File size: 10,527 Bytes
8e12b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import datetime
import logging
import os
import os.path
import os.path as osp
import time
from collections import OrderedDict

import PIL
import torch
from accelerate.logging import get_logger
from accelerate.state import PartialState
from PIL import Image, ImageDraw, ImageFont
from torchvision.transforms.transforms import ToTensor
from torchvision.utils import make_grid

NEGATIVE_PROMPT = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'


# ----------- file/logger util ----------
def get_time_str():
    return time.strftime('%Y%m%d_%H%M%S', time.localtime())


def mkdir_and_rename(path):
    """mkdirs. If path exists, rename it with timestamp and create a new one.

    Args:
        path (str): Folder path.
    """
    if osp.exists(path):
        new_name = path + '_archived_' + get_time_str()
        print(f'Path already exists. Rename it to {new_name}', flush=True)
        os.rename(path, new_name)
    os.makedirs(path, exist_ok=True)


def make_exp_dirs(opt):
    """Make dirs for experiments."""
    path_opt = opt['path'].copy()
    if opt['is_train']:
        mkdir_and_rename(path_opt.pop('experiments_root'))
    else:
        mkdir_and_rename(path_opt.pop('results_root'))
    for key, path in path_opt.items():
        if ('strict_load' in key) or ('pretrain_network' in key) or (
                'resume' in key) or ('param_key' in key) or ('lora_path' in key):
            continue
        else:
            os.makedirs(path, exist_ok=True)


def copy_opt_file(opt_file, experiments_root):
    # copy the yml file to the experiment root
    import sys
    import time
    from shutil import copyfile
    cmd = ' '.join(sys.argv)
    filename = osp.join(experiments_root, osp.basename(opt_file))
    copyfile(opt_file, filename)

    with open(filename, 'r+') as f:
        lines = f.readlines()
        lines.insert(
            0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n')
        f.seek(0)
        f.writelines(lines)


def set_path_logger(accelerator, root_path, config_path, opt, is_train=True):
    opt['is_train'] = is_train

    if is_train:
        experiments_root = osp.join(root_path, 'experiments', opt['name'])
        opt['path']['experiments_root'] = experiments_root
        opt['path']['models'] = osp.join(experiments_root, 'models')
        opt['path']['log'] = experiments_root
        opt['path']['visualization'] = osp.join(experiments_root,
                                                'visualization')
    else:
        results_root = osp.join(root_path, 'results', opt['name'])
        opt['path']['results_root'] = results_root
        opt['path']['log'] = results_root
        opt['path']['visualization'] = osp.join(results_root, 'visualization')

    # Handle the output folder creation
    if accelerator.is_main_process:
        make_exp_dirs(opt)

    accelerator.wait_for_everyone()

    if is_train:
        copy_opt_file(config_path, opt['path']['experiments_root'])
        log_file = osp.join(opt['path']['log'],
                            f"train_{opt['name']}_{get_time_str()}.log")
        set_logger(log_file)
    else:
        copy_opt_file(config_path, opt['path']['results_root'])
        log_file = osp.join(opt['path']['log'],
                            f"test_{opt['name']}_{get_time_str()}.log")
        set_logger(log_file)


def set_logger(log_file=None):
    # Make one log on every process with the configuration for debugging.
    format_str = '%(asctime)s %(levelname)s: %(message)s'
    log_level = logging.INFO
    handlers = []

    file_handler = logging.FileHandler(log_file, 'w')
    file_handler.setFormatter(logging.Formatter(format_str))
    file_handler.setLevel(log_level)
    handlers.append(file_handler)

    stream_handler = logging.StreamHandler()
    stream_handler.setFormatter(logging.Formatter(format_str))
    handlers.append(stream_handler)

    logging.basicConfig(handlers=handlers, level=log_level)


def dict2str(opt, indent_level=1):
    """dict to string for printing options.

    Args:
        opt (dict): Option dict.
        indent_level (int): Indent level. Default: 1.

    Return:
        (str): Option string for printing.
    """
    msg = '\n'
    for k, v in opt.items():
        if isinstance(v, dict):
            msg += ' ' * (indent_level * 2) + k + ':['
            msg += dict2str(v, indent_level + 1)
            msg += ' ' * (indent_level * 2) + ']\n'
        else:
            msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
    return msg


class MessageLogger():
    """Message logger for printing.

    Args:
        opt (dict): Config. It contains the following keys:
            name (str): Exp name.
            logger (dict): Contains 'print_freq' (str) for logger interval.
            train (dict): Contains 'total_iter' (int) for total iters.
            use_tb_logger (bool): Use tensorboard logger.
        start_iter (int): Start iter. Default: 1.
        tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None.
    """
    def __init__(self, opt, start_iter=1):
        self.exp_name = opt['name']
        self.interval = opt['logger']['print_freq']
        self.start_iter = start_iter
        self.max_iters = opt['train']['total_iter']
        self.start_time = time.time()
        self.logger = get_logger('mixofshow', log_level='INFO')

    def reset_start_time(self):
        self.start_time = time.time()

    def __call__(self, log_vars):
        """Format logging message.

        Args:
            log_vars (dict): It contains the following keys:
                epoch (int): Epoch number.
                iter (int): Current iter.
                lrs (list): List for learning rates.

                time (float): Iter time.
                data_time (float): Data time for each iter.
        """
        # epoch, iter, learning rates
        current_iter = log_vars.pop('iter')
        lrs = log_vars.pop('lrs')

        message = (
            f'[{self.exp_name[:5]}..][Iter:{current_iter:8,d}, lr:('
        )
        for v in lrs:
            message += f'{v:.3e},'
        message += ')] '

        # time and estimated time
        total_time = time.time() - self.start_time
        time_sec_avg = total_time / (current_iter - self.start_iter + 1)
        eta_sec = time_sec_avg * (self.max_iters - current_iter - 1)
        eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
        message += f'[eta: {eta_str}] '

        # other items, especially losses
        for k, v in log_vars.items():
            message += f'{k}: {v:.4e} '

        self.logger.info(message)


def reduce_loss_dict(accelerator, loss_dict):
    """reduce loss dict.

    In distributed training, it averages the losses among different GPUs .

    Args:
        loss_dict (OrderedDict): Loss dict.
    """
    with torch.no_grad():
        keys = []
        losses = []
        for name, value in loss_dict.items():
            keys.append(name)
            losses.append(value)
        losses = torch.stack(losses, 0)
        losses = accelerator.reduce(losses)

        world_size = PartialState().num_processes
        losses /= world_size

        loss_dict = {key: loss for key, loss in zip(keys, losses)}

        log_dict = OrderedDict()
        for name, value in loss_dict.items():
            log_dict[name] = value.mean().item()

        return log_dict


def pil_imwrite(img, file_path, auto_mkdir=True):
    """Write image to file.
    Args:
        img (ndarray): Image array to be written.
        file_path (str): Image file path.
        params (None or list): Same as opencv's :func:`imwrite` interface.
        auto_mkdir (bool): If the parent folder of `file_path` does not exist,
            whether to create it automatically.
    Returns:
        bool: Successful or not.
    """
    assert isinstance(
        img, PIL.Image.Image), 'model should return a list of PIL images'
    if auto_mkdir:
        dir_name = os.path.abspath(os.path.dirname(file_path))
        os.makedirs(dir_name, exist_ok=True)
    img.save(file_path)


def draw_prompt(text, height, width, font_size=45):
    img = Image.new('RGB', (width, height), (255, 255, 255))
    draw = ImageDraw.Draw(img)
    font = ImageFont.truetype(
        osp.join(osp.dirname(osp.abspath(__file__)), 'arial.ttf'), font_size)

    guess_count = 0

    while font.font.getsize(text[:guess_count])[0][
            0] + 0.1 * width < width - 0.1 * width and guess_count < len(
                text):  # centerize
        guess_count += 1

    text_new = ''
    for idx, s in enumerate(text):
        if idx % guess_count == 0:
            text_new += '\n'
            if s == ' ':
                s = ''  # new line trip the first space
        text_new += s

    draw.text([int(0.1 * width), int(0.3 * height)],
              text_new,
              font=font,
              fill='black')
    return img


def compose_visualize(dir_path):
    file_list = sorted(os.listdir(dir_path))
    img_list = []
    info_dict = {'prompts': set(), 'sample_args': set(), 'suffix': set()}
    for filename in file_list:
        prompt, sample_args, index, suffix = osp.splitext(
            osp.basename(filename))[0].split('---')

        filepath = osp.join(dir_path, filename)
        img = ToTensor()(Image.open(filepath))
        height, width = img.shape[1:]

        if prompt not in info_dict['prompts']:
            img_list.append(ToTensor()(draw_prompt(prompt,
                                                   height=height,
                                                   width=width,
                                                   font_size=45)))
        info_dict['prompts'].add(prompt)
        info_dict['sample_args'].add(sample_args)
        info_dict['suffix'].add(suffix)

        img_list.append(img)
    assert len(
        info_dict['sample_args']
    ) == 1, 'compose dir should contain images form same sample args.'
    assert len(info_dict['suffix']
               ) == 1, 'compose dir should contain images form same suffix.'

    grid = make_grid(img_list, nrow=len(img_list) // len(info_dict['prompts']))
    # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to(
        'cpu', torch.uint8).numpy()
    im = Image.fromarray(ndarr)
    save_name = f"{info_dict['sample_args'].pop()}---{info_dict['suffix'].pop()}.jpg"
    im.save(osp.join(osp.dirname(dir_path), save_name))