File size: 13,511 Bytes
aa4eedf
 
 
 
 
57d7bf6
 
 
 
 
aa4eedf
57d7bf6
 
aa4eedf
57d7bf6
aa4eedf
57d7bf6
 
 
b81062c
57d7bf6
 
 
 
 
 
 
 
 
b81062c
 
 
 
 
 
 
 
 
57d7bf6
aa4eedf
 
57d7bf6
 
 
 
1509ef8
 
 
b81062c
 
1509ef8
b81062c
1509ef8
 
57d7bf6
 
 
 
1509ef8
57d7bf6
 
 
 
 
 
 
 
 
 
 
aa4eedf
57d7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa4eedf
57d7bf6
aa4eedf
1509ef8
 
b81062c
1509ef8
57d7bf6
 
 
 
 
aa4eedf
 
f619b74
57d7bf6
 
1509ef8
 
b81062c
1509ef8
aa4eedf
 
 
57d7bf6
aa4eedf
 
 
 
1509ef8
 
f619b74
 
 
1509ef8
aa4eedf
1509ef8
f619b74
 
c816497
 
 
b81062c
c816497
f619b74
 
 
 
 
 
 
aa4eedf
1509ef8
f619b74
 
 
 
 
 
 
 
 
 
 
 
1509ef8
 
f619b74
1509ef8
f619b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c816497
 
 
 
 
f619b74
 
 
 
b81062c
f619b74
b81062c
 
57d7bf6
1509ef8
57d7bf6
1509ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f619b74
 
1509ef8
aa4eedf
f619b74
 
 
 
 
aa4eedf
57d7bf6
 
 
 
b81062c
57d7bf6
 
 
 
 
 
 
 
 
 
 
aa4eedf
 
 
57d7bf6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import gradio as gr
import numpy as np
import random
import torch

import io, json
from PIL import Image
import os.path
from weight_fusion import compose_concepts
from regionally_controlable_sampling import sample_image, build_model, prepare_text

device = "cuda" if torch.cuda.is_available() else "cpu"
power_device = "GPU" if torch.cuda.is_available() else "CPU"

MAX_SEED = 100_000

def generate(region1_concept,
                region2_concept,
                prompt,
                pose_image_name,
                region1_prompt,
                region2_prompt,
                negative_prompt,
                region_neg_prompt,
                seed,
                randomize_seed,
                sketch_adaptor_weight,
                keypose_adaptor_weight
                ):

    if region1_concept==region2_concept:
        raise gr.Error("Please choose two different characters for merging weights.")
    if len(pose_image_name)==0:
        raise gr.Error("Please select one spatial condition!")
    if len(region1_prompt)==0 or len(region1_prompt)==0:
        raise gr.Error("Your regional prompt cannot be empty.")
    if len(prompt)==0:
        raise gr.Error("Your global prompt cannot be empty.")
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    region1_concept, region2_concept = region1_concept.lower(), region2_concept.lower()
    pretrained_model = merge(region1_concept, region2_concept)

    with open('multi-concept/pose_data/pose.json') as f:
        d = json.load(f)

    pose_image = {os.path.basename(obj['img_dir']):obj for obj in d}[pose_image_name]
    # pose_image = {obj.pop('pose_id'):obj for obj in d}[int(pose_image_id)]
    print(pose_image)
    keypose_condition = pose_image['img_dir']
    region1 = pose_image['region1']
    region2 = pose_image['region2']

    region1_prompt = f'[<{region1_concept}1> <{region1_concept}2>, {region1_prompt}]'
    region2_prompt = f'[<{region2_concept}1> <{region2_concept}2>, {region2_prompt}]'
    prompt_rewrite=f"{region1_prompt}-*-{region_neg_prompt}-*-{region1}|{region2_prompt}-*-{region_neg_prompt}-*-{region2}"
    print(prompt_rewrite)

    result = infer(pretrained_model,
                  prompt,
                  prompt_rewrite,
                  negative_prompt,
                  seed,
                  keypose_condition,
                  keypose_adaptor_weight,
                #   sketch_condition,
                #   sketch_adaptor_weight,
                  )
    
    return result

def merge(concept1, concept2):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    c1, c2 = sorted([concept1, concept2])
    assert c1!=c2
    merge_name = c1+'_'+c2

    save_path = f'experiments/multi-concept/{merge_name}'

    if os.path.isdir(save_path):
        print(f'{save_path} already exists. Collecting merged weights from existing weights...')

    else:
        os.makedirs(save_path)
        json_path = os.path.join(save_path,'merge_config.json')
        alpha = 1.8
        data = [
            {
                "lora_path": f"experiments/single-concept/{c1}/models/edlora_model-latest.pth",
                "unet_alpha": alpha,
                "text_encoder_alpha": alpha,
                "concept_name": f"<{c1}1> <{c1}2>"
            },
            {
                "lora_path": f"experiments/single-concept/{c2}/models/edlora_model-latest.pth",
                "unet_alpha": alpha,
                "text_encoder_alpha": alpha,
                "concept_name": f"<{c2}1> <{c2}2>"
            }
        ]
        with io.open(json_path,'w',encoding='utf8') as outfile:
            json.dump(data, outfile, indent = 4, ensure_ascii=False)

        compose_concepts(
            concept_cfg=json_path,
            optimize_textenc_iters=500,
            optimize_unet_iters=50,
            pretrained_model_path="nitrosocke/mo-di-diffusion",
            save_path=save_path,
            suffix='base',
            device=device,
        )
        print(f'Merged weight for {c1}+{c2} saved in {save_path}!\n\n')

    modelbase_path = os.path.join(save_path,'combined_model_base')
    assert os.path.isdir(modelbase_path)

    # save_path = 'experiments/multi-concept/elsa_moana_weight18/combined_model_base'
    return modelbase_path

def infer(pretrained_model,
          prompt,
          prompt_rewrite,
          negative_prompt='',
          seed=16141,
          keypose_condition=None,
          keypose_adaptor_weight=1.0,
          sketch_condition=None,
          sketch_adaptor_weight=0.0,
          region_sketch_adaptor_weight='',
          region_keypose_adaptor_weight=''
          ):

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    pipe = build_model(pretrained_model, device)

    if sketch_condition is not None and os.path.exists(sketch_condition):
        sketch_condition = Image.open(sketch_condition).convert('L')
        width_sketch, height_sketch = sketch_condition.size
        print('use sketch condition')
    else:
        sketch_condition, width_sketch, height_sketch = None, 0, 0
        print('skip sketch condition')

    if keypose_condition is not None and os.path.exists(keypose_condition):
        keypose_condition = Image.open(keypose_condition).convert('RGB')
        width_pose, height_pose = keypose_condition.size
        print('use pose condition')
    else:
        keypose_condition, width_pose, height_pose = None, 0, 0
        print('skip pose condition')

    if width_sketch != 0 and width_pose != 0:
        assert width_sketch == width_pose and height_sketch == height_pose, 'conditions should be same size'
    width, height = max(width_pose, width_sketch), max(height_pose, height_sketch)
    kwargs = {
        'sketch_condition': sketch_condition,
        'keypose_condition': keypose_condition,
        'height': height,
        'width': width,
    }

    prompts = [prompt]
    prompts_rewrite = [prompt_rewrite]
    input_prompt = [prepare_text(p, p_w, height, width) for p, p_w in zip(prompts, prompts_rewrite)]
    save_prompt = input_prompt[0][0]
    print(save_prompt)

    image = sample_image(
        pipe,
        input_prompt=input_prompt,
        input_neg_prompt=[negative_prompt] * len(input_prompt),
        generator=torch.Generator(device).manual_seed(seed),
        sketch_adaptor_weight=sketch_adaptor_weight,
        region_sketch_adaptor_weight=region_sketch_adaptor_weight,
        keypose_adaptor_weight=keypose_adaptor_weight,
        region_keypose_adaptor_weight=region_keypose_adaptor_weight,
        **kwargs)
    
    return image[0]


def on_select(evt: gr.SelectData):  # SelectData is a subclass of EventData
    return evt.value['image']['orig_name']

examples_context = [
    'walking at Stanford university campus',
    'in a castle',
    'in the forest',
    'in front of Eiffel tower'
]

examples_region1 = ['wearing red hat, high resolution, best quality']
examples_region2 = ['smilling, wearing blue shirt, high resolution, best quality']

with open('multi-concept/pose_data/pose.json') as f:
    d = json.load(f)
pose_image_list = [(obj['img_id'],obj['img_dir']) for obj in d]

css="""
#col-container {
    margin: 0 auto;
    max-width: 600px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(f"""
    # Orthogonal Adaptation
    Describe your world with a **🪄 text prompt (global and local)** and choose two characters to merge. 
    Select their **👯 poses (spatial conditions)** for regionally controllable sampling to generate a unique image using our model.
    Let your creativity run wild! (Currently running on : {power_device} )    
    """)
    
    with gr.Row():
        with gr.Column(elem_id="col-container"):
            
            # gr.Markdown(f"""
            # ### 🪄 Global and Region prompts
            # """)
            # with gr.Group():   
            with gr.Tab('🪄 Global and Region prompts'):
                prompt = gr.Text(
                        label="ContextPrompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your global context prompt",
                        container=False,
                    )
                

                with gr.Row():
                    
                    region1_concept = gr.Dropdown(
                        ["Elsa", "Moana"],
                        label="Character 1",
                        info="Will add more characters later!"
                    )
                    region2_concept = gr.Dropdown(
                        ["Elsa", "Moana"], 
                        label="Character 2", 
                        info="Will add more characters later!"
                    )


                with gr.Row():

                    region1_prompt = gr.Textbox(
                        label="Region1 Prompt",
                        show_label=False,
                        max_lines=2,
                        placeholder="Enter your regional prompt for character 1",
                        container=False,
                    )

                    region2_prompt = gr.Textbox(
                        label="Region2 Prompt",
                        show_label=False,
                        max_lines=2,
                        placeholder="Enter your regional prompt for character 2",
                        container=False,
                    )


                gr.Examples(
                                label = 'Global Prompt example',
                                examples = examples_context,
                                inputs = [prompt]
                            )  
                
                with gr.Row():
                    gr.Examples(
                        label = 'Region1 Prompt example',
                        examples = examples_region1,
                        inputs = [region1_prompt]
                    )

                    gr.Examples(
                        label = 'Region2 Prompt example',
                        examples = [examples_region2],
                        inputs = [region2_prompt]
                    )

            # gr.Markdown(f"""
            # ### 👯 Spatial Condition  
            # """)
            # with gr.Group():
            with gr.Tab('👯 Spatial Condition '):
                gallery = gr.Gallery(label = "Select pose for characters",
                                    value = [obj[1]for obj in pose_image_list], 
                                    elem_id = [obj[0]for obj in pose_image_list],
                                    interactive=False, show_download_button=False,
                                    preview=True, height = 400, object_fit="scale-down")
                
                pose_image_name = gr.Textbox(visible=False)
                gallery.select(on_select, None, pose_image_name)

            run_button = gr.Button("Run", scale=1)

            with gr.Accordion("Advanced Settings", open=False):

                negative_prompt = gr.Text(
                    label="Context Negative prompt",
                    max_lines=1,
                    value = 'saturated, cropped, worst quality, low quality',
                    visible=False,
                )

                region_neg_prompt =  gr.Text(
                    label="Regional Negative prompt",
                    max_lines=1,
                    value = 'shirtless, nudity, saturated, cropped, worst quality, low quality',
                    visible=False,
                )
                
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row():
                    
                    sketch_adaptor_weight = gr.Slider(
                            label="Sketch Adapter Weight",
                            minimum = 0,
                            maximum = 1,
                            step=0.01,
                            value=0,
                    )
                    
                    keypose_adaptor_weight = gr.Slider(
                            label="Keypose Adapter Weight",
                            minimum = 0,
                            maximum = 1,
                            step= 0.01,
                            value=1.0,
                    )
        
        with gr.Column():
            result = gr.Image(label="Result", show_label=False)

    gr.Markdown(f"""
                *Image generation may take longer for the first time you use a new combination of characters. <br />
                This is because the model needs to load weights for each concept involved.*
                """)

    run_button.click(
        fn = generate,
        inputs = [region1_concept,
                  region2_concept,
                  prompt,
                  pose_image_name,
                  region1_prompt,
                  region2_prompt,
                  negative_prompt,
                  region_neg_prompt,
                  seed,
                  randomize_seed,
                #   sketch_condition,
                #   keypose_condition,
                  sketch_adaptor_weight,
                  keypose_adaptor_weight
                  ],
        outputs = [result]
    )

demo.queue().launch(share=True)