File size: 18,444 Bytes
8e12b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import itertools
import math
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
from accelerate.logging import get_logger
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from transformers import CLIPTextModel, CLIPTokenizer
from mixofshow.models.edlora import (LoRALinearLayer, revise_edlora_unet_attention_controller_forward,
revise_edlora_unet_attention_forward)
from mixofshow.pipelines.pipeline_edlora import bind_concept_prompt
from mixofshow.utils.ptp_util import AttentionStore
class EDLoRATrainer(nn.Module):
def __init__(
self,
pretrained_path,
new_concept_token,
initializer_token,
enable_edlora, # true for ED-LoRA, false for LoRA
finetune_cfg=None,
noise_offset=None,
attn_reg_weight=None,
reg_full_identity=True, # True for thanos, False for real person (don't need to encode clothes)
use_mask_loss=True,
enable_xformers=False,
gradient_checkpoint=False
):
super().__init__()
# 1. Load the model.
self.vae = AutoencoderKL.from_pretrained(pretrained_path, subfolder='vae')
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_path, subfolder='tokenizer')
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_path, subfolder='text_encoder')
self.unet = UNet2DConditionModel.from_pretrained(pretrained_path, subfolder='unet')
if gradient_checkpoint:
self.unet.enable_gradient_checkpointing()
if enable_xformers:
assert is_xformers_available(), 'need to install xformer first'
# 2. Define train scheduler
self.scheduler = DDPMScheduler.from_pretrained(pretrained_path, subfolder='scheduler')
# 3. define training cfg
self.enable_edlora = enable_edlora
self.new_concept_cfg = self.init_new_concept(new_concept_token, initializer_token, enable_edlora=enable_edlora)
self.attn_reg_weight = attn_reg_weight
self.reg_full_identity = reg_full_identity
if self.attn_reg_weight is not None:
self.controller = AttentionStore(training=True)
revise_edlora_unet_attention_controller_forward(self.unet, self.controller) # support both lora and edlora forward
else:
revise_edlora_unet_attention_forward(self.unet) # support both lora and edlora forward
if finetune_cfg:
self.set_finetune_cfg(finetune_cfg)
self.noise_offset = noise_offset
self.use_mask_loss = use_mask_loss
def set_finetune_cfg(self, finetune_cfg):
logger = get_logger('mixofshow', log_level='INFO')
params_to_freeze = [self.vae.parameters(), self.text_encoder.parameters(), self.unet.parameters()]
# step 1: close all parameters, required_grad to False
for params in itertools.chain(*params_to_freeze):
params.requires_grad = False
# step 2: begin to add trainable paramters
params_group_list = []
# 1. text embedding
if finetune_cfg['text_embedding']['enable_tuning']:
text_embedding_cfg = finetune_cfg['text_embedding']
params_list = []
for params in self.text_encoder.get_input_embeddings().parameters():
params.requires_grad = True
params_list.append(params)
params_group = {'params': params_list, 'lr': text_embedding_cfg['lr']}
if 'weight_decay' in text_embedding_cfg:
params_group.update({'weight_decay': text_embedding_cfg['weight_decay']})
params_group_list.append(params_group)
logger.info(f"optimizing embedding using lr: {text_embedding_cfg['lr']}")
# 2. text encoder
if finetune_cfg['text_encoder']['enable_tuning'] and finetune_cfg['text_encoder'].get('lora_cfg'):
text_encoder_cfg = finetune_cfg['text_encoder']
where = text_encoder_cfg['lora_cfg'].pop('where')
assert where in ['CLIPEncoderLayer', 'CLIPAttention']
self.text_encoder_lora = nn.ModuleList()
params_list = []
for name, module in self.text_encoder.named_modules():
if module.__class__.__name__ == where:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == 'Linear':
lora_module = LoRALinearLayer(name + '.' + child_name, child_module, **text_encoder_cfg['lora_cfg'])
self.text_encoder_lora.append(lora_module)
params_list.extend(list(lora_module.parameters()))
params_group_list.append({'params': params_list, 'lr': text_encoder_cfg['lr']})
logger.info(f"optimizing text_encoder ({len(self.text_encoder_lora)} LoRAs), using lr: {text_encoder_cfg['lr']}")
# 3. unet
if finetune_cfg['unet']['enable_tuning'] and finetune_cfg['unet'].get('lora_cfg'):
unet_cfg = finetune_cfg['unet']
where = unet_cfg['lora_cfg'].pop('where')
assert where in ['Transformer2DModel', 'Attention']
self.unet_lora = nn.ModuleList()
params_list = []
for name, module in self.unet.named_modules():
if module.__class__.__name__ == where:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == 'Linear' or (child_module.__class__.__name__ == 'Conv2d' and child_module.kernel_size == (1, 1)):
lora_module = LoRALinearLayer(name + '.' + child_name, child_module, **unet_cfg['lora_cfg'])
self.unet_lora.append(lora_module)
params_list.extend(list(lora_module.parameters()))
params_group_list.append({'params': params_list, 'lr': unet_cfg['lr']})
logger.info(f"optimizing unet ({len(self.unet_lora)} LoRAs), using lr: {unet_cfg['lr']}")
# 4. optimize params
self.params_to_optimize_iterator = params_group_list
def get_params_to_optimize(self):
return self.params_to_optimize_iterator
def init_new_concept(self, new_concept_tokens, initializer_tokens, enable_edlora=True):
logger = get_logger('mixofshow', log_level='INFO')
new_concept_cfg = {}
new_concept_tokens = new_concept_tokens.split('+')
if initializer_tokens is None:
initializer_tokens = ['<rand-0.017>'] * len(new_concept_tokens)
else:
initializer_tokens = initializer_tokens.split('+')
assert len(new_concept_tokens) == len(initializer_tokens), 'concept token should match init token.'
for idx, (concept_name, init_token) in enumerate(zip(new_concept_tokens, initializer_tokens)):
if enable_edlora:
num_new_embedding = 16
else:
num_new_embedding = 1
new_token_names = [f'<new{idx * num_new_embedding + layer_id}>' for layer_id in range(num_new_embedding)]
num_added_tokens = self.tokenizer.add_tokens(new_token_names)
assert num_added_tokens == len(new_token_names), 'some token is already in tokenizer'
new_token_ids = [self.tokenizer.convert_tokens_to_ids(token_name) for token_name in new_token_names]
# init embedding
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
token_embeds = self.text_encoder.get_input_embeddings().weight.data
if init_token.startswith('<rand'):
sigma_val = float(re.findall(r'<rand-(.*)>', init_token)[0])
init_feature = torch.randn_like(token_embeds[0]) * sigma_val
logger.info(f'{concept_name} ({min(new_token_ids)}-{max(new_token_ids)}) is random initialized by: {init_token}')
else:
# Convert the initializer_token, placeholder_token to ids
init_token_ids = self.tokenizer.encode(init_token, add_special_tokens=False)
# print(token_ids)
# Check if initializer_token is a single token or a sequence of tokens
if len(init_token_ids) > 1 or init_token_ids[0] == 40497:
raise ValueError('The initializer token must be a single existing token.')
init_feature = token_embeds[init_token_ids]
logger.info(f'{concept_name} ({min(new_token_ids)}-{max(new_token_ids)}) is random initialized by existing token ({init_token}): {init_token_ids[0]}')
for token_id in new_token_ids:
token_embeds[token_id] = init_feature.clone()
new_concept_cfg.update({
concept_name: {
'concept_token_ids': new_token_ids,
'concept_token_names': new_token_names
}
})
return new_concept_cfg
def get_all_concept_token_ids(self):
new_concept_token_ids = []
for _, new_token_cfg in self.new_concept_cfg.items():
new_concept_token_ids.extend(new_token_cfg['concept_token_ids'])
return new_concept_token_ids
def forward(self, images, prompts, masks, img_masks):
latents = self.vae.encode(images).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
if self.noise_offset is not None:
noise += self.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, self.scheduler.config.num_train_timesteps, (bsz, ), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = self.scheduler.add_noise(latents, noise, timesteps)
if self.enable_edlora:
prompts = bind_concept_prompt(prompts, new_concept_cfg=self.new_concept_cfg) # edlora
# get text ids
text_input_ids = self.tokenizer(
prompts,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt').input_ids.to(latents.device)
# Get the text embedding for conditioning
encoder_hidden_states = self.text_encoder(text_input_ids)[0]
if self.enable_edlora:
encoder_hidden_states = rearrange(encoder_hidden_states, '(b n) m c -> b n m c', b=latents.shape[0]) # edlora
# Predict the noise residual
model_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if self.scheduler.config.prediction_type == 'epsilon':
target = noise
elif self.scheduler.config.prediction_type == 'v_prediction':
target = self.scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f'Unknown prediction type {self.scheduler.config.prediction_type}')
if self.use_mask_loss:
loss_mask = masks
else:
loss_mask = img_masks
loss = F.mse_loss(model_pred.float(), target.float(), reduction='none')
loss = ((loss * loss_mask).sum([1, 2, 3]) / loss_mask.sum([1, 2, 3])).mean()
if self.attn_reg_weight is not None:
attention_maps = self.controller.get_average_attention()
attention_loss = self.cal_attn_reg(attention_maps, masks, text_input_ids)
if not torch.isnan(attention_loss): # full mask
loss = loss + attention_loss
self.controller.reset()
return loss
def cal_attn_reg(self, attention_maps, masks, text_input_ids):
'''
attention_maps: {down_cross:[], mid_cross:[], up_cross:[]}
masks: torch.Size([1, 1, 64, 64])
text_input_ids: torch.Size([16, 77])
'''
# step 1: find token position
batch_size = masks.shape[0]
text_input_ids = rearrange(text_input_ids, '(b l) n -> b l n', b=batch_size)
# print(masks.shape) # torch.Size([2, 1, 64, 64])
# print(text_input_ids.shape) # torch.Size([2, 16, 77])
new_token_pos = []
all_concept_token_ids = self.get_all_concept_token_ids()
for text in text_input_ids:
text = text[0] # even multi-layer embedding, we extract the first one
new_token_pos.append([idx for idx in range(len(text)) if text[idx] in all_concept_token_ids])
# step2: aggregate attention maps with resolution and concat heads
attention_groups = {'64': [], '32': [], '16': [], '8': []}
for _, attention_list in attention_maps.items():
for attn in attention_list:
res = int(math.sqrt(attn.shape[1]))
cross_map = attn.reshape(batch_size, -1, res, res, attn.shape[-1])
attention_groups[str(res)].append(cross_map)
for k, cross_map in attention_groups.items():
cross_map = torch.cat(cross_map, dim=-4) # concat heads
cross_map = cross_map.sum(-4) / cross_map.shape[-4] # e.g., 64 torch.Size([2, 64, 64, 77])
cross_map = torch.stack([batch_map[..., batch_pos] for batch_pos, batch_map in zip(new_token_pos, cross_map)]) # torch.Size([2, 64, 64, 2])
attention_groups[k] = cross_map
attn_reg_total = 0
# step3: calculate loss for each resolution: <new1> <new2> -> <new1> is to penalize outside mask, <new2> to align with mask
for k, cross_map in attention_groups.items():
map_adjective, map_subject = cross_map[..., 0], cross_map[..., 1]
map_subject = map_subject / map_subject.max()
map_adjective = map_adjective / map_adjective.max()
gt_mask = F.interpolate(masks, size=map_subject.shape[1:], mode='nearest').squeeze(1)
if self.reg_full_identity:
loss_subject = F.mse_loss(map_subject.float(), gt_mask.float(), reduction='mean')
else:
loss_subject = map_subject[gt_mask == 0].mean()
loss_adjective = map_adjective[gt_mask == 0].mean()
attn_reg_total += self.attn_reg_weight * (loss_subject + loss_adjective)
return attn_reg_total
def load_delta_state_dict(self, delta_state_dict):
# load embedding
logger = get_logger('mixofshow', log_level='INFO')
if 'new_concept_embedding' in delta_state_dict and len(delta_state_dict['new_concept_embedding']) != 0:
new_concept_tokens = list(delta_state_dict['new_concept_embedding'].keys())
# check whether new concept is initialized
token_embeds = self.text_encoder.get_input_embeddings().weight.data
if set(new_concept_tokens) != set(self.new_concept_cfg.keys()):
logger.warning('Your checkpoint have different concept with your model, loading existing concepts')
for concept_name, concept_cfg in self.new_concept_cfg.items():
logger.info(f'load: concept_{concept_name}')
token_embeds[concept_cfg['concept_token_ids']] = token_embeds[
concept_cfg['concept_token_ids']].copy_(delta_state_dict['new_concept_embedding'][concept_name])
# load text_encoder
if 'text_encoder' in delta_state_dict and len(delta_state_dict['text_encoder']) != 0:
load_keys = delta_state_dict['text_encoder'].keys()
if hasattr(self, 'text_encoder_lora') and len(load_keys) == 2 * len(self.text_encoder_lora):
logger.info('loading LoRA for text encoder:')
for lora_module in self.text_encoder_lora:
for name, param, in lora_module.named_parameters():
logger.info(f'load: {lora_module.name}.{name}')
param.data.copy_(delta_state_dict['text_encoder'][f'{lora_module.name}.{name}'])
else:
for name, param, in self.text_encoder.named_parameters():
if name in load_keys and 'token_embedding' not in name:
logger.info(f'load: {name}')
param.data.copy_(delta_state_dict['text_encoder'][f'{name}'])
# load unet
if 'unet' in delta_state_dict and len(delta_state_dict['unet']) != 0:
load_keys = delta_state_dict['unet'].keys()
if hasattr(self, 'unet_lora') and len(load_keys) == 2 * len(self.unet_lora):
logger.info('loading LoRA for unet:')
for lora_module in self.unet_lora:
for name, param, in lora_module.named_parameters():
logger.info(f'load: {lora_module.name}.{name}')
param.data.copy_(delta_state_dict['unet'][f'{lora_module.name}.{name}'])
else:
for name, param, in self.unet.named_parameters():
if name in load_keys:
logger.info(f'load: {name}')
param.data.copy_(delta_state_dict['unet'][f'{name}'])
def delta_state_dict(self):
delta_dict = {'new_concept_embedding': {}, 'text_encoder': {}, 'unet': {}}
# save_embedding
for concept_name, concept_cfg in self.new_concept_cfg.items():
learned_embeds = self.text_encoder.get_input_embeddings().weight[concept_cfg['concept_token_ids']]
delta_dict['new_concept_embedding'][concept_name] = learned_embeds.detach().cpu()
# save text model
for lora_module in self.text_encoder_lora:
for name, param, in lora_module.named_parameters():
delta_dict['text_encoder'][f'{lora_module.name}.{name}'] = param.cpu().clone()
# save unet model
for lora_module in self.unet_lora:
for name, param, in lora_module.named_parameters():
delta_dict['unet'][f'{lora_module.name}.{name}'] = param.cpu().clone()
return delta_dict |