File size: 27,302 Bytes
b7e867a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
import argparse
import copy
import itertools
import json
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from diffusers import DDPMScheduler, DPMSolverMultistepScheduler, StableDiffusionPipeline
from tqdm import tqdm
from mixofshow.models.edlora import revise_edlora_unet_attention_forward
from mixofshow.pipelines.pipeline_edlora import bind_concept_prompt
from mixofshow.utils.util import set_logger
TEMPLATE_SIMPLE = 'photo of a {}'
def chunk_compute_mse(K_target, V_target, W, device, chunk_size=5000):
num_chunks = (K_target.size(0) + chunk_size - 1) // chunk_size
loss = 0
for i in range(num_chunks):
# Extract the current chunk
start_idx = i * chunk_size
end_idx = min(start_idx + chunk_size, K_target.size(0))
loss += F.mse_loss(
F.linear(K_target[start_idx:end_idx].to(device), W),
V_target[start_idx:end_idx].to(device)) * (end_idx - start_idx)
loss /= K_target.size(0)
return loss
def update_quasi_newton(K_target, V_target, W, iters, device):
'''
Args:
K: torch.Tensor, size [n_samples, n_features]
V: torch.Tensor, size [n_samples, n_targets]
K_target: torch.Tensor, size [n_constraints, n_features]
V_target: torch.Tensor, size [n_constraints, n_targets]
W: torch.Tensor, size [n_targets, n_features]
Returns:
Wnew: torch.Tensor, size [n_targets, n_features]
'''
W = W.detach()
V_target = V_target.detach()
K_target = K_target.detach()
W.requires_grad = True
K_target.requires_grad = False
V_target.requires_grad = False
best_loss = np.Inf
best_W = None
def closure():
nonlocal best_W, best_loss
optimizer.zero_grad()
if len(W.shape) == 4:
loss = F.mse_loss(F.conv2d(K_target.to(device), W),
V_target.to(device))
else:
loss = chunk_compute_mse(K_target, V_target, W, device)
if loss < best_loss:
best_loss = loss
best_W = W.clone().cpu()
loss.backward()
return loss
optimizer = optim.LBFGS([W],
lr=1,
max_iter=iters,
history_size=25,
line_search_fn='strong_wolfe',
tolerance_grad=1e-16,
tolerance_change=1e-16)
optimizer.step(closure)
with torch.no_grad():
if len(W.shape) == 4:
loss = torch.norm(
F.conv2d(K_target.to(torch.float32), best_W.to(torch.float32)) - V_target.to(torch.float32), 2, dim=1)
else:
loss = torch.norm(
F.linear(K_target.to(torch.float32), best_W.to(torch.float32)) - V_target.to(torch.float32), 2, dim=1)
logging.info('new_concept loss: %e' % loss.mean().item())
return best_W
def merge_lora_into_weight(original_state_dict, lora_state_dict, modification_layer_names, model_type, alpha, device):
def get_lora_down_name(original_layer_name):
if model_type == 'text_encoder':
lora_down_name = original_layer_name.replace('q_proj.weight', 'q_proj.lora_down.weight') \
.replace('k_proj.weight', 'k_proj.lora_down.weight') \
.replace('v_proj.weight', 'v_proj.lora_down.weight') \
.replace('out_proj.weight', 'out_proj.lora_down.weight') \
.replace('fc1.weight', 'fc1.lora_down.weight') \
.replace('fc2.weight', 'fc2.lora_down.weight')
else:
lora_down_name = k.replace('to_q.weight', 'to_q.lora_down.weight') \
.replace('to_k.weight', 'to_k.lora_down.weight') \
.replace('to_v.weight', 'to_v.lora_down.weight') \
.replace('to_out.0.weight', 'to_out.0.lora_down.weight') \
.replace('ff.net.0.proj.weight', 'ff.net.0.proj.lora_down.weight') \
.replace('ff.net.2.weight', 'ff.net.2.lora_down.weight') \
.replace('proj_out.weight', 'proj_out.lora_down.weight') \
.replace('proj_in.weight', 'proj_in.lora_down.weight')
return lora_down_name
assert model_type in ['unet', 'text_encoder']
new_state_dict = copy.deepcopy(original_state_dict)
load_cnt = 0
for k in modification_layer_names:
lora_down_name = get_lora_down_name(k)
lora_up_name = lora_down_name.replace('lora_down', 'lora_up')
if lora_up_name in lora_state_dict:
load_cnt += 1
original_params = new_state_dict[k]
lora_down_params = lora_state_dict[lora_down_name].to(device)
lora_up_params = lora_state_dict[lora_up_name].to(device)
if len(original_params.shape) == 4:
lora_param = lora_up_params.squeeze(
) @ lora_down_params.squeeze()
lora_param = lora_param.unsqueeze(-1).unsqueeze(-1)
else:
lora_param = lora_up_params @ lora_down_params
merge_params = original_params + alpha * lora_param
new_state_dict[k] = merge_params
logging.info(f'load {load_cnt} LoRAs of {model_type}')
return new_state_dict
module_io_recoder = {}
record_feature = False # remember to set record feature
def get_hooker(module_name):
def hook(module, feature_in, feature_out):
if module_name not in module_io_recoder:
module_io_recoder[module_name] = {'input': [], 'output': []}
if record_feature:
module_io_recoder[module_name]['input'].append(feature_in[0].cpu())
if module.bias is not None:
if len(feature_out.shape) == 4:
bias = module.bias.unsqueeze(-1).unsqueeze(-1)
else:
bias = module.bias
module_io_recoder[module_name]['output'].append(
(feature_out - bias).cpu()) # remove bias
else:
module_io_recoder[module_name]['output'].append(
feature_out.cpu())
return hook
def init_stable_diffusion(pretrained_model_path, device):
# step1: get w0 parameters
model_id = pretrained_model_path
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
train_scheduler = DDPMScheduler.from_pretrained(model_id, subfolder='scheduler')
test_scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder='scheduler')
pipe.safety_checker = None
pipe.scheduler = test_scheduler
return pipe, train_scheduler, test_scheduler
@torch.no_grad()
def get_text_feature(prompts, tokenizer, text_encoder, device, return_type='category_embedding'):
text_features = []
if return_type == 'category_embedding':
for text in prompts:
tokens = tokenizer(
text,
truncation=True,
max_length=tokenizer.model_max_length,
return_length=True,
return_overflowing_tokens=False,
padding='do_not_pad',
).input_ids
new_token_position = torch.where(torch.tensor(tokens) >= 49407)[0]
# >40497 not include end token | >=40497 include end token
concept_feature = text_encoder(
torch.LongTensor(tokens).reshape(
1, -1).to(device))[0][:,
new_token_position].reshape(-1, 768)
text_features.append(concept_feature)
return torch.cat(text_features, 0).float()
elif return_type == 'full_embedding':
text_input = tokenizer(prompts,
padding='max_length',
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors='pt')
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
return text_embeddings
else:
raise NotImplementedError
def merge_new_concepts_(embedding_list, concept_list, tokenizer, text_encoder):
def add_new_concept(concept_name, embedding):
new_token_names = [
f'<new{start_idx + layer_id}>'
for layer_id in range(NUM_CROSS_ATTENTION_LAYERS)
]
num_added_tokens = tokenizer.add_tokens(new_token_names)
assert num_added_tokens == NUM_CROSS_ATTENTION_LAYERS
new_token_ids = [
tokenizer.convert_tokens_to_ids(token_name)
for token_name in new_token_names
]
text_encoder.resize_token_embeddings(len(tokenizer))
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[new_token_ids] = token_embeds[new_token_ids].copy_(
embedding[concept_name])
embedding_features.update({concept_name: embedding[concept_name]})
logging.info(
f'concept {concept_name} is bind with token_id: [{min(new_token_ids)}, {max(new_token_ids)}]'
)
return start_idx + NUM_CROSS_ATTENTION_LAYERS, new_token_ids, new_token_names
embedding_features = {}
new_concept_cfg = {}
start_idx = 0
NUM_CROSS_ATTENTION_LAYERS = 16
for idx, (embedding,
concept) in enumerate(zip(embedding_list, concept_list)):
concept_names = concept['concept_name'].split(' ')
for concept_name in concept_names:
if not concept_name.startswith('<'):
continue
else:
assert concept_name in embedding, 'check the config, the provide concept name is not in the lora model'
start_idx, new_token_ids, new_token_names = add_new_concept(
concept_name, embedding)
new_concept_cfg.update({
concept_name: {
'concept_token_ids': new_token_ids,
'concept_token_names': new_token_names
}
})
return embedding_features, new_concept_cfg
def parse_new_concepts(concept_cfg):
with open(concept_cfg, 'r') as f:
concept_list = json.load(f)
model_paths = [concept['lora_path'] for concept in concept_list]
embedding_list = []
text_encoder_list = []
unet_crosskv_list = []
unet_spatial_attn_list = []
for model_path in model_paths:
model = torch.load(model_path)['params']
if 'new_concept_embedding' in model and len(
model['new_concept_embedding']) != 0:
embedding_list.append(model['new_concept_embedding'])
else:
embedding_list.append(None)
if 'text_encoder' in model and len(model['text_encoder']) != 0:
text_encoder_list.append(model['text_encoder'])
else:
text_encoder_list.append(None)
if 'unet' in model and len(model['unet']) != 0:
crosskv_matches = ['attn2.to_k.lora', 'attn2.to_v.lora']
crosskv_dict = {
k: v
for k, v in model['unet'].items()
if any([x in k for x in crosskv_matches])
}
if len(crosskv_dict) != 0:
unet_crosskv_list.append(crosskv_dict)
else:
unet_crosskv_list.append(None)
spatial_attn_dict = {
k: v
for k, v in model['unet'].items()
if all([x not in k for x in crosskv_matches])
}
if len(spatial_attn_dict) != 0:
unet_spatial_attn_list.append(spatial_attn_dict)
else:
unet_spatial_attn_list.append(None)
else:
unet_crosskv_list.append(None)
unet_spatial_attn_list.append(None)
return embedding_list, text_encoder_list, unet_crosskv_list, unet_spatial_attn_list, concept_list
def merge_kv_in_cross_attention(concept_list, optimize_iters, new_concept_cfg,
tokenizer, text_encoder, unet,
unet_crosskv_list, device):
# crosskv attention layer names
matches = ['attn2.to_k', 'attn2.to_v']
cross_attention_idx = -1
cross_kv_layer_names = []
# the crosskv name should match the order down->mid->up, and record its layer id
for name, _ in unet.down_blocks.named_parameters():
if any([x in name for x in matches]):
if 'to_k' in name:
cross_attention_idx += 1
cross_kv_layer_names.append(
(cross_attention_idx, 'down_blocks.' + name))
cross_kv_layer_names.append(
(cross_attention_idx,
'down_blocks.' + name.replace('to_k', 'to_v')))
else:
pass
for name, _ in unet.mid_block.named_parameters():
if any([x in name for x in matches]):
if 'to_k' in name:
cross_attention_idx += 1
cross_kv_layer_names.append(
(cross_attention_idx, 'mid_block.' + name))
cross_kv_layer_names.append(
(cross_attention_idx,
'mid_block.' + name.replace('to_k', 'to_v')))
else:
pass
for name, _ in unet.up_blocks.named_parameters():
if any([x in name for x in matches]):
if 'to_k' in name:
cross_attention_idx += 1
cross_kv_layer_names.append(
(cross_attention_idx, 'up_blocks.' + name))
cross_kv_layer_names.append(
(cross_attention_idx,
'up_blocks.' + name.replace('to_k', 'to_v')))
else:
pass
logging.info(
f'Unet have {len(cross_kv_layer_names)} linear layer (related to text feature) need to optimize'
)
original_unet_state_dict = unet.state_dict() # original state dict
concept_weights_dict = {}
# step 1: construct prompts for new concept -> extract input/target features
for concept, tuned_state_dict in zip(concept_list, unet_crosskv_list):
for layer_idx, layer_name in cross_kv_layer_names:
# merge params
original_params = original_unet_state_dict[layer_name]
# hard coded here: in unet, self/crosskv attention disable bias parameter
lora_down_name = layer_name.replace('to_k.weight', 'to_k.lora_down.weight').replace('to_v.weight', 'to_v.lora_down.weight')
lora_up_name = lora_down_name.replace('lora_down', 'lora_up')
alpha = concept['unet_alpha']
lora_down_params = tuned_state_dict[lora_down_name].to(device)
lora_up_params = tuned_state_dict[lora_up_name].to(device)
merge_params = original_params + alpha * lora_up_params @ lora_down_params
if layer_name not in concept_weights_dict:
concept_weights_dict[layer_name] = []
concept_weights_dict[layer_name].append(merge_params)
new_kv_weights = {}
# step 3: begin update model
for idx, (layer_idx, layer_name) in enumerate(cross_kv_layer_names):
Wnew = torch.stack(concept_weights_dict[layer_name])
Wnew = torch.mean(Wnew, dim = 0)
new_kv_weights[layer_name] = Wnew
return new_kv_weights
def merge_text_encoder(concept_list, optimize_iters, new_concept_cfg,
tokenizer, text_encoder, text_encoder_list, device):
LoRA_keys = []
for textenc_lora in text_encoder_list:
LoRA_keys += list(textenc_lora.keys())
LoRA_keys = set([
key.replace('.lora_down', '').replace('.lora_up', '')
for key in LoRA_keys
])
text_encoder_layer_names = LoRA_keys
candidate_module_name = [
'q_proj', 'k_proj', 'v_proj', 'out_proj', 'fc1', 'fc2'
]
candidate_module_name = [
name for name in candidate_module_name
if any([name in key for key in LoRA_keys])
]
logging.info(f'text_encoder have {len(text_encoder_layer_names)} linear layer need to optimize')
global module_io_recoder, record_feature
hooker_handlers = []
for name, module in text_encoder.named_modules():
if any([item in name for item in candidate_module_name]):
hooker_handlers.append(module.register_forward_hook(hook=get_hooker(name)))
logging.info(f'add {len(hooker_handlers)} hooker to text_encoder')
original_state_dict = copy.deepcopy(text_encoder.state_dict()) # original state dict
new_concept_input_dict = {}
new_concept_output_dict = {}
concept_weights_dict = {}
for concept, lora_state_dict in zip(concept_list, text_encoder_list):
merged_state_dict = merge_lora_into_weight(
original_state_dict,
lora_state_dict,
text_encoder_layer_names,
model_type='text_encoder',
alpha=concept['text_encoder_alpha'],
device=device)
text_encoder.load_state_dict(merged_state_dict) # load merged parameters
# we use different model to compute new concept feature
for layer_name in text_encoder_layer_names:
if layer_name not in concept_weights_dict:
concept_weights_dict[layer_name] = []
concept_weights_dict[layer_name].append(merged_state_dict[layer_name])
new_text_encoder_weights = {}
# step 3: begin update model
for idx, layer_name in enumerate(text_encoder_layer_names):
Wnew = torch.stack(concept_weights_dict[layer_name])
Wnew = torch.mean(Wnew, dim = 0)
new_text_encoder_weights[layer_name] = Wnew
logging.info(f'remove {len(hooker_handlers)} hooker from text_encoder')
# remove forward hooker
for hook_handle in hooker_handlers:
hook_handle.remove()
return new_text_encoder_weights
@torch.no_grad()
def decode_to_latents(concept_prompt, new_concept_cfg, tokenizer, text_encoder,
unet, test_scheduler, num_inference_steps, device,
record_nums, batch_size):
concept_prompt = bind_concept_prompt([concept_prompt], new_concept_cfg)
text_embeddings = get_text_feature(
concept_prompt,
tokenizer,
text_encoder,
device,
return_type='full_embedding').unsqueeze(0)
text_embeddings = text_embeddings.repeat((batch_size, 1, 1, 1))
# sd 1.x
height = 512
width = 512
latents = torch.randn((batch_size, unet.in_channels, height // 8, width // 8), )
latents = latents.to(device, dtype=text_embeddings.dtype)
test_scheduler.set_timesteps(num_inference_steps)
latents = latents * test_scheduler.init_noise_sigma
global record_feature
step = (test_scheduler.timesteps.size(0)) // record_nums
record_timestep = test_scheduler.timesteps[torch.arange(0, test_scheduler.timesteps.size(0), step=step)[:record_nums]]
for t in tqdm(test_scheduler.timesteps):
if t in record_timestep:
record_feature = True
else:
record_feature = False
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = latents
latent_model_input = test_scheduler.scale_model_input(latent_model_input, t)
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# compute the previous noisy sample x_t -> x_t-1
latents = test_scheduler.step(noise_pred, t, latents).prev_sample
return latents, text_embeddings
def merge_spatial_attention(concept_list, optimize_iters, new_concept_cfg, tokenizer, text_encoder, unet, unet_spatial_attn_list, test_scheduler, device):
LoRA_keys = []
for unet_lora in unet_spatial_attn_list:
LoRA_keys += list(unet_lora.keys())
LoRA_keys = set([
key.replace('.lora_down', '').replace('.lora_up', '')
for key in LoRA_keys
])
spatial_attention_layer_names = LoRA_keys
candidate_module_name = [
'attn2.to_q', 'attn2.to_out.0', 'attn1.to_q', 'attn1.to_k',
'attn1.to_v', 'attn1.to_out.0', 'ff.net.2', 'ff.net.0.proj',
'proj_out', 'proj_in'
]
candidate_module_name = [
name for name in candidate_module_name
if any([name in key for key in LoRA_keys])
]
logging.info(
f'unet have {len(spatial_attention_layer_names)} linear layer need to optimize'
)
global module_io_recoder
hooker_handlers = []
for name, module in unet.named_modules():
if any([x in name for x in candidate_module_name]):
hooker_handlers.append(
module.register_forward_hook(hook=get_hooker(name)))
logging.info(f'add {len(hooker_handlers)} hooker to unet')
original_state_dict = copy.deepcopy(unet.state_dict()) # original state dict
revise_edlora_unet_attention_forward(unet)
concept_weights_dict = {}
for concept, tuned_state_dict in zip(concept_list, unet_spatial_attn_list):
# set unet
module_io_recoder = {} # reinit module io recorder
merged_state_dict = merge_lora_into_weight(
original_state_dict,
tuned_state_dict,
spatial_attention_layer_names,
model_type='unet',
alpha=concept['unet_alpha'],
device=device)
unet.load_state_dict(merged_state_dict) # load merged parameters
concept_name = concept['concept_name']
concept_prompt = TEMPLATE_SIMPLE.format(concept_name)
for layer_name in spatial_attention_layer_names:
if layer_name not in concept_weights_dict:
concept_weights_dict[layer_name] = []
concept_weights_dict[layer_name].append(merged_state_dict[layer_name])
new_spatial_attention_weights = {}
# step 5: begin update model
for idx, layer_name in enumerate(spatial_attention_layer_names):
Wnew = torch.stack(concept_weights_dict[layer_name])
Wnew = torch.mean(Wnew, dim = 0)
new_spatial_attention_weights[layer_name] = Wnew
logging.info(f'remove {len(hooker_handlers)} hooker from unet')
for hook_handle in hooker_handlers:
hook_handle.remove()
return new_spatial_attention_weights
def compose_concepts(concept_cfg, optimize_textenc_iters, optimize_unet_iters, pretrained_model_path, save_path, suffix, device):
logging.info('------Step 1: load stable diffusion checkpoint------')
pipe, train_scheduler, test_scheduler = init_stable_diffusion(pretrained_model_path, device)
tokenizer, text_encoder, unet, vae = pipe.tokenizer, pipe.text_encoder, pipe.unet, pipe.vae
for param in itertools.chain(text_encoder.parameters(), unet.parameters(), vae.parameters()):
param.requires_grad = False
logging.info('------Step 2: load new concepts checkpoints------')
embedding_list, text_encoder_list, unet_crosskv_list, unet_spatial_attn_list, concept_list = parse_new_concepts(concept_cfg)
# step 1: inplace add new concept to tokenizer and embedding layers of text encoder
if any([item is not None for item in embedding_list]):
logging.info('------Step 3: merge token embedding------')
_, new_concept_cfg = merge_new_concepts_(embedding_list, concept_list, tokenizer, text_encoder)
else:
_, new_concept_cfg = {}, {}
logging.info('------Step 3: no new embedding, skip merging token embedding------')
# step 2: construct reparameterized text_encoder
if any([item is not None for item in text_encoder_list]):
logging.info('------Step 4: merge text encoder------')
new_text_encoder_weights = merge_text_encoder(
concept_list, optimize_textenc_iters, new_concept_cfg, tokenizer,
text_encoder, text_encoder_list, device)
# update the merged state_dict in text_encoder
text_encoder_state_dict = text_encoder.state_dict()
text_encoder_state_dict.update(new_text_encoder_weights)
text_encoder.load_state_dict(text_encoder_state_dict)
else:
new_text_encoder_weights = {}
logging.info('------Step 4: no new text encoder, skip merging text encoder------')
# step 3: merge unet (k,v in crosskv-attention) params, since they only receive input from text-encoder
if any([item is not None for item in unet_crosskv_list]):
logging.info('------Step 5: merge kv of cross-attention in unet------')
new_kv_weights = merge_kv_in_cross_attention(
concept_list, optimize_textenc_iters, new_concept_cfg,
tokenizer, text_encoder, unet, unet_crosskv_list, device)
# update the merged state_dict in kv of crosskv-attention in Unet
unet_state_dict = unet.state_dict()
unet_state_dict.update(new_kv_weights)
unet.load_state_dict(unet_state_dict)
else:
new_kv_weights = {}
logging.info('------Step 5: no new kv of cross-attention in unet, skip merging kv------')
# step 4: merge unet (q,k,v in self-attention, q in crosskv-attention)
if any([item is not None for item in unet_spatial_attn_list]):
logging.info('------Step 6: merge spatial attention (q in cross-attention, qkv in self-attention) in unet------')
new_spatial_attention_weights = merge_spatial_attention(
concept_list, optimize_unet_iters, new_concept_cfg, tokenizer,
text_encoder, unet, unet_spatial_attn_list, test_scheduler, device)
unet_state_dict = unet.state_dict()
unet_state_dict.update(new_spatial_attention_weights)
unet.load_state_dict(unet_state_dict)
else:
new_spatial_attention_weights = {}
logging.info('------Step 6: no new spatial-attention in unet, skip merging spatial attention------')
checkpoint_save_path = f'{save_path}/combined_model_{suffix}'
pipe.save_pretrained(checkpoint_save_path)
with open(os.path.join(checkpoint_save_path, 'new_concept_cfg.json'), 'w') as json_file:
json.dump(new_concept_cfg, json_file)
def parse_args():
parser = argparse.ArgumentParser('', add_help=False)
parser.add_argument('--concept_cfg', help='json file for multi-concept', required=True, type=str)
parser.add_argument('--save_path', help='folder name to save optimized weights', required=True, type=str)
parser.add_argument('--suffix', help='suffix name', default='base', type=str)
parser.add_argument('--pretrained_models', required=True, type=str)
parser.add_argument('--optimize_unet_iters', default=50, type=int)
parser.add_argument('--optimize_textenc_iters', default=500, type=int)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
# s1: set logger
exp_dir = f'{args.save_path}'
os.makedirs(exp_dir, exist_ok=True)
log_file = f'{exp_dir}/combined_model_{args.suffix}.log'
set_logger(log_file=log_file)
logging.info(args)
compose_concepts(args.concept_cfg,
args.optimize_textenc_iters,
args.optimize_unet_iters,
args.pretrained_models,
args.save_path,
args.suffix,
device='cuda')
|