File size: 3,852 Bytes
8e12b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import json
import os
import random
import re
from pathlib import Path

from PIL import Image
from torch.utils.data import Dataset

from mixofshow.data.pil_transform import PairCompose, build_transform


class LoraDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """
    def __init__(self, opt):
        self.opt = opt
        self.instance_images_path = []

        with open(opt['concept_list'], 'r') as f:
            concept_list = json.load(f)

        replace_mapping = opt.get('replace_mapping', {})
        use_caption = opt.get('use_caption', False)
        use_mask = opt.get('use_mask', False)

        for concept in concept_list:
            instance_prompt = concept['instance_prompt']
            caption_dir = concept.get('caption_dir')
            mask_dir = concept.get('mask_dir')

            instance_prompt = self.process_text(instance_prompt, replace_mapping)

            inst_img_path = []
            for x in Path(concept['instance_data_dir']).iterdir():
                if x.is_file() and x.name != '.DS_Store':
                    basename = os.path.splitext(os.path.basename(x))[0]
                    caption_path = os.path.join(caption_dir, f'{basename}.txt') if caption_dir is not None else None

                    if use_caption and caption_path is not None and os.path.exists(caption_path):
                        with open(caption_path, 'r') as fr:
                            line = fr.readlines()[0]
                            instance_prompt_image = self.process_text(line, replace_mapping)
                    else:
                        instance_prompt_image = instance_prompt

                    if use_mask and mask_dir is not None:
                        mask_path = os.path.join(mask_dir, f'{basename}.png')
                    else:
                        mask_path = None

                    inst_img_path.append((x, instance_prompt_image, mask_path))

            self.instance_images_path.extend(inst_img_path)

        random.shuffle(self.instance_images_path)
        self.num_instance_images = len(self.instance_images_path)

        self.instance_transform = PairCompose([
            build_transform(transform_opt)
            for transform_opt in opt['instance_transform']
        ])

    def process_text(self, instance_prompt, replace_mapping):
        for k, v in replace_mapping.items():
            instance_prompt = instance_prompt.replace(k, v)
        instance_prompt = instance_prompt.strip()
        instance_prompt = re.sub(' +', ' ', instance_prompt)
        return instance_prompt

    def __len__(self):
        return self.num_instance_images * self.opt['dataset_enlarge_ratio']

    def __getitem__(self, index):
        example = {}
        instance_image, instance_prompt, instance_mask = self.instance_images_path[index % self.num_instance_images]
        instance_image = Image.open(instance_image).convert('RGB')

        extra_args = {'prompts': instance_prompt}
        if instance_mask is not None:
            instance_mask = Image.open(instance_mask).convert('L')
            extra_args.update({'mask': instance_mask})

        instance_image, extra_args = self.instance_transform(instance_image, **extra_args)
        example['images'] = instance_image

        if 'mask' in extra_args:
            example['masks'] = extra_args['mask']
            example['masks'] = example['masks'].unsqueeze(0)
        else:
            pass

        if 'img_mask' in extra_args:
            example['img_masks'] = extra_args['img_mask']
            example['img_masks'] = example['img_masks'].unsqueeze(0)
        else:
            raise NotImplementedError

        example['prompts'] = extra_args['prompts']
        return example