File size: 30,084 Bytes
8e12b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import math
from typing import Any, Callable, Dict, List, Optional, Union

import PIL
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter import (StableDiffusionAdapterPipeline,
                                                                               StableDiffusionAdapterPipelineOutput,
                                                                               _preprocess_adapter_image)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from torch import einsum
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer

if is_xformers_available():
    import xformers

from mixofshow.pipelines.pipeline_edlora import bind_concept_prompt

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class RegionT2I_AttnProcessor:
    def __init__(self, cross_attention_idx, attention_op=None):
        self.attention_op = attention_op
        self.cross_attention_idx = cross_attention_idx

    def region_rewrite(self, attn, hidden_states, query, region_list, height, width):

        def get_region_mask(region_list, feat_height, feat_width):
            exclusive_mask = torch.zeros((feat_height, feat_width))
            for region in region_list:
                start_h, start_w, end_h, end_w = region[-1]
                start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
                    start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
                exclusive_mask[start_h:end_h, start_w:end_w] += 1
            return exclusive_mask

        dtype = query.dtype
        seq_lens = query.shape[1]
        downscale = math.sqrt(height * width / seq_lens)

        # 0: context >=1: may be overlap
        feat_height, feat_width = int(height // downscale), int(width // downscale)
        region_mask = get_region_mask(region_list, feat_height, feat_width)

        query = rearrange(query, 'b (h w) c -> b h w c', h=feat_height, w=feat_width)
        hidden_states = rearrange(hidden_states, 'b (h w) c -> b h w c', h=feat_height, w=feat_width)

        new_hidden_state = torch.zeros_like(hidden_states)
        new_hidden_state[:, region_mask == 0, :] = hidden_states[:, region_mask == 0, :]

        replace_ratio = 1.0
        new_hidden_state[:, region_mask != 0, :] = (1 - replace_ratio) * hidden_states[:, region_mask != 0, :]

        for region in region_list:
            region_key, region_value, region_box = region

            if attn.upcast_attention:
                query = query.float()
                region_key = region_key.float()

            start_h, start_w, end_h, end_w = region_box
            start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
                start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)

            attention_region = einsum('b h w c, b n c -> b h w n', query[:, start_h:end_h, start_w:end_w, :], region_key) * attn.scale
            if attn.upcast_softmax:
                attention_region = attention_region.float()

            attention_region = attention_region.softmax(dim=-1)
            attention_region = attention_region.to(dtype)

            hidden_state_region = einsum('b h w n, b n c -> b h w c', attention_region, region_value)
            new_hidden_state[:, start_h:end_h, start_w:end_w, :] += \
                replace_ratio * (hidden_state_region / (
                    region_mask.reshape(
                        1, *region_mask.shape, 1)[:, start_h:end_h, start_w:end_w, :]
                ).to(query.device))

        new_hidden_state = rearrange(new_hidden_state, 'b h w c -> b (h w) c')
        return new_hidden_state

    def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, **cross_attention_kwargs):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            is_cross = False
            encoder_hidden_states = hidden_states
        else:
            is_cross = True

            if len(encoder_hidden_states.shape) == 4:  # multi-layer embedding
                encoder_hidden_states = encoder_hidden_states[:, self.cross_attention_idx, ...]
            else:
                encoder_hidden_states = encoder_hidden_states

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        if is_xformers_available() and not is_cross:
            hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
            hidden_states = hidden_states.to(query.dtype)
        else:
            attention_probs = attn.get_attention_scores(query, key, attention_mask)
            hidden_states = torch.bmm(attention_probs, value)

        if is_cross:
            region_list = []
            for region in cross_attention_kwargs['region_list']:
                if len(region[0].shape) == 4:
                    region_key = attn.to_k(region[0][:, self.cross_attention_idx, ...])
                    region_value = attn.to_v(region[0][:, self.cross_attention_idx, ...])
                else:
                    region_key = attn.to_k(region[0])
                    region_value = attn.to_v(region[0])
                region_key = attn.head_to_batch_dim(region_key)
                region_value = attn.head_to_batch_dim(region_value)
                region_list.append((region_key, region_value, region[1]))

            hidden_states = self.region_rewrite(
                attn=attn,
                hidden_states=hidden_states,
                query=query,
                region_list=region_list,
                height=cross_attention_kwargs['height'],
                width=cross_attention_kwargs['width'])

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


def revise_regionally_t2iadapter_attention_forward(unet):
    def change_forward(unet, count):
        for name, layer in unet.named_children():
            if layer.__class__.__name__ == 'Attention':
                layer.set_processor(RegionT2I_AttnProcessor(count))
                if 'attn2' in name:
                    count += 1
            else:
                count = change_forward(layer, count)
        return count

    # use this to ensure the order
    cross_attention_idx = change_forward(unet.down_blocks, 0)
    cross_attention_idx = change_forward(unet.mid_block, cross_attention_idx)
    cross_attention_idx = change_forward(unet.up_blocks, cross_attention_idx)
    print(f'Number of attention layer registered {cross_attention_idx}')


class RegionallyT2IAdapterPipeline(StableDiffusionAdapterPipeline):
    _optional_components = ['safety_checker', 'feature_extractor']

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = False,
    ):

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
                ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
                ' results in services or applications open to the public. Both the diffusers team and Hugging Face'
                ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
                ' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
                ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .'
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                'Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety'
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)
        self.new_concept_cfg = None
        revise_regionally_t2iadapter_attention_forward(self.unet)

    def set_new_concept_cfg(self, new_concept_cfg=None):
        self.new_concept_cfg = new_concept_cfg

    def _encode_region_prompt(self,
        prompt,
        new_concept_cfg,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        height=512,
        width=512
    ):
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        assert batch_size == 1, 'only sample one prompt once in this version'

        if prompt_embeds is None:
            context_prompt, region_list = prompt[0][0], prompt[0][1]
            context_prompt = bind_concept_prompt([context_prompt], new_concept_cfg)
            context_prompt_input_ids = self.tokenizer(
                context_prompt,
                padding='max_length',
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors='pt',
            ).input_ids

            prompt_embeds = self.text_encoder(context_prompt_input_ids.to(device), attention_mask=None)[0]
            prompt_embeds = rearrange(prompt_embeds, '(b n) m c -> b n m c', b=batch_size)
            prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

            bs_embed, layer_num, seq_len, _ = prompt_embeds.shape

            if negative_prompt is None:
                negative_prompt = [''] * batch_size

            negative_prompt_input_ids = self.tokenizer(
                negative_prompt,
                padding='max_length',
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors='pt').input_ids

            negative_prompt_embeds = self.text_encoder(
                negative_prompt_input_ids.to(device),
                attention_mask=None,
            )[0]

            negative_prompt_embeds = (negative_prompt_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
            negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

            for idx, region in enumerate(region_list):
                region_prompt, region_neg_prompt, pos = region
                region_prompt = bind_concept_prompt([region_prompt], new_concept_cfg)
                region_prompt_input_ids = self.tokenizer(
                    region_prompt,
                    padding='max_length',
                    max_length=self.tokenizer.model_max_length,
                    truncation=True,
                    return_tensors='pt').input_ids
                region_embeds = self.text_encoder(region_prompt_input_ids.to(device), attention_mask=None)[0]
                region_embeds = rearrange(region_embeds, '(b n) m c -> b n m c', b=batch_size)
                region_embeds.to(dtype=self.text_encoder.dtype, device=device)
                bs_embed, layer_num, seq_len, _ = region_embeds.shape

                if region_neg_prompt is None:
                    region_neg_prompt = [''] * batch_size
                region_negprompt_input_ids = self.tokenizer(
                    region_neg_prompt,
                    padding='max_length',
                    max_length=self.tokenizer.model_max_length,
                    truncation=True,
                    return_tensors='pt').input_ids
                region_neg_embeds = self.text_encoder(region_negprompt_input_ids.to(device), attention_mask=None)[0]
                region_neg_embeds = (region_neg_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
                region_neg_embeds.to(dtype=self.text_encoder.dtype, device=device)
                region_list[idx] = (torch.cat([region_neg_embeds, region_embeds]), pos)

        return prompt_embeds, region_list

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        keypose_adapter_input: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
        keypose_adaptor_weight=1.0,
        region_keypose_adaptor_weight='',
        sketch_adapter_input: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
        sketch_adaptor_weight=1.0,
        region_sketch_adaptor_weight='',
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = 'pil',
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
                The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
                type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
                accepted as an image. The control image is automatically resized to fit the output image.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] instead
                of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
            adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the
                residual in the original unet. If multiple adapters are specified in init, you can set the
                corresponding scale as a list.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple. When returning a tuple, the first element is a list with the generated images, and the second
            element is a list of `bool`s denoting whether the corresponding generated image likely represents
            "not-safe-for-work" (nsfw) content, according to the `safety_checker`.
        """
        # 0. Default height and width to unet
        device = self._execution_device

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
        )

        if keypose_adapter_input is not None:
            keypose_input = _preprocess_adapter_image(keypose_adapter_input, height, width).to(self.device)
            keypose_input = keypose_input.to(self.keypose_adapter.dtype)
        else:
            keypose_input = None

        if sketch_adapter_input is not None:
            sketch_input = _preprocess_adapter_image(sketch_adapter_input, height, width).to(self.device)
            sketch_input = sketch_input.to(self.sketch_adapter.dtype)
        else:
            sketch_input = None

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        assert self.new_concept_cfg is not None
        prompt_embeds, region_list = self._encode_region_prompt(
            prompt,
            self.new_concept_cfg,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            height=height,
            width=width
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        if keypose_input is not None:
            keypose_adapter_state = self.keypose_adapter(keypose_input)
        else:
            keypose_adapter_state = None

        if sketch_input is not None:
            sketch_adapter_state = self.sketch_adapter(sketch_input)
        else:
            sketch_adapter_state = None

        num_states = len(keypose_adapter_state) if keypose_adapter_state is not None else len(sketch_adapter_state)

        adapter_state = []

        for idx in range(num_states):
            if keypose_adapter_state is not None:
                feat_keypose = keypose_adapter_state[idx]

                spatial_adaptor_weight = keypose_adaptor_weight * torch.ones(*feat_keypose.shape[2:]).to(
                    feat_keypose.dtype).to(feat_keypose.device)

                if region_keypose_adaptor_weight != '':
                    region_list = region_keypose_adaptor_weight.split('|')

                    for region_weight in region_list:
                        region, weight = region_weight.split('-')
                        region = eval(region)
                        weight = eval(weight)
                        feat_height, feat_width = feat_keypose.shape[2:]
                        start_h, start_w, end_h, end_w = region
                        start_h, end_h = start_h / height, end_h / height
                        start_w, end_w = start_w / width, end_w / width

                        start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
                            start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)

                        spatial_adaptor_weight[start_h:end_h, start_w:end_w] = weight
                feat_keypose = spatial_adaptor_weight * feat_keypose

            else:
                feat_keypose = 0

            if sketch_adapter_state is not None:
                feat_sketch = sketch_adapter_state[idx]
                # print(feat_keypose.shape) # torch.Size([1, 320, 64, 128])
                spatial_adaptor_weight = sketch_adaptor_weight * torch.ones(*feat_sketch.shape[2:]).to(
                    feat_sketch.dtype).to(feat_sketch.device)

                if region_sketch_adaptor_weight != '':
                    region_list = region_sketch_adaptor_weight.split('|')

                    for region_weight in region_list:
                        region, weight = region_weight.split('-')
                        region = eval(region)
                        weight = eval(weight)
                        feat_height, feat_width = feat_sketch.shape[2:]
                        start_h, start_w, end_h, end_w = region
                        start_h, end_h = start_h / height, end_h / height
                        start_w, end_w = start_w / width, end_w / width

                        start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
                            start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)

                        spatial_adaptor_weight[start_h:end_h, start_w:end_w] = weight
                feat_sketch = spatial_adaptor_weight * feat_sketch
            else:
                feat_sketch = 0

            adapter_state.append(feat_keypose + feat_sketch)

        if do_classifier_free_guidance:
            for k, v in enumerate(adapter_state):
                adapter_state[k] = torch.cat([v] * 2, dim=0)

        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs={
                        'region_list': region_list,
                        'height': height,
                        'width': width,
                    },
                    down_block_additional_residuals=[state.clone() for state in adapter_state],
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if output_type == 'latent':
            image = latents
            has_nsfw_concept = None
        elif output_type == 'pil':
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

        # Offload last model to CPU
        if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionAdapterPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)