File size: 30,084 Bytes
8e12b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
import math
from typing import Any, Callable, Dict, List, Optional, Union
import PIL
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter import (StableDiffusionAdapterPipeline,
StableDiffusionAdapterPipelineOutput,
_preprocess_adapter_image)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from torch import einsum
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
if is_xformers_available():
import xformers
from mixofshow.pipelines.pipeline_edlora import bind_concept_prompt
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class RegionT2I_AttnProcessor:
def __init__(self, cross_attention_idx, attention_op=None):
self.attention_op = attention_op
self.cross_attention_idx = cross_attention_idx
def region_rewrite(self, attn, hidden_states, query, region_list, height, width):
def get_region_mask(region_list, feat_height, feat_width):
exclusive_mask = torch.zeros((feat_height, feat_width))
for region in region_list:
start_h, start_w, end_h, end_w = region[-1]
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
exclusive_mask[start_h:end_h, start_w:end_w] += 1
return exclusive_mask
dtype = query.dtype
seq_lens = query.shape[1]
downscale = math.sqrt(height * width / seq_lens)
# 0: context >=1: may be overlap
feat_height, feat_width = int(height // downscale), int(width // downscale)
region_mask = get_region_mask(region_list, feat_height, feat_width)
query = rearrange(query, 'b (h w) c -> b h w c', h=feat_height, w=feat_width)
hidden_states = rearrange(hidden_states, 'b (h w) c -> b h w c', h=feat_height, w=feat_width)
new_hidden_state = torch.zeros_like(hidden_states)
new_hidden_state[:, region_mask == 0, :] = hidden_states[:, region_mask == 0, :]
replace_ratio = 1.0
new_hidden_state[:, region_mask != 0, :] = (1 - replace_ratio) * hidden_states[:, region_mask != 0, :]
for region in region_list:
region_key, region_value, region_box = region
if attn.upcast_attention:
query = query.float()
region_key = region_key.float()
start_h, start_w, end_h, end_w = region_box
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
attention_region = einsum('b h w c, b n c -> b h w n', query[:, start_h:end_h, start_w:end_w, :], region_key) * attn.scale
if attn.upcast_softmax:
attention_region = attention_region.float()
attention_region = attention_region.softmax(dim=-1)
attention_region = attention_region.to(dtype)
hidden_state_region = einsum('b h w n, b n c -> b h w c', attention_region, region_value)
new_hidden_state[:, start_h:end_h, start_w:end_w, :] += \
replace_ratio * (hidden_state_region / (
region_mask.reshape(
1, *region_mask.shape, 1)[:, start_h:end_h, start_w:end_w, :]
).to(query.device))
new_hidden_state = rearrange(new_hidden_state, 'b h w c -> b (h w) c')
return new_hidden_state
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, **cross_attention_kwargs):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
is_cross = False
encoder_hidden_states = hidden_states
else:
is_cross = True
if len(encoder_hidden_states.shape) == 4: # multi-layer embedding
encoder_hidden_states = encoder_hidden_states[:, self.cross_attention_idx, ...]
else:
encoder_hidden_states = encoder_hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
if is_xformers_available() and not is_cross:
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
hidden_states = hidden_states.to(query.dtype)
else:
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
if is_cross:
region_list = []
for region in cross_attention_kwargs['region_list']:
if len(region[0].shape) == 4:
region_key = attn.to_k(region[0][:, self.cross_attention_idx, ...])
region_value = attn.to_v(region[0][:, self.cross_attention_idx, ...])
else:
region_key = attn.to_k(region[0])
region_value = attn.to_v(region[0])
region_key = attn.head_to_batch_dim(region_key)
region_value = attn.head_to_batch_dim(region_value)
region_list.append((region_key, region_value, region[1]))
hidden_states = self.region_rewrite(
attn=attn,
hidden_states=hidden_states,
query=query,
region_list=region_list,
height=cross_attention_kwargs['height'],
width=cross_attention_kwargs['width'])
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
def revise_regionally_t2iadapter_attention_forward(unet):
def change_forward(unet, count):
for name, layer in unet.named_children():
if layer.__class__.__name__ == 'Attention':
layer.set_processor(RegionT2I_AttnProcessor(count))
if 'attn2' in name:
count += 1
else:
count = change_forward(layer, count)
return count
# use this to ensure the order
cross_attention_idx = change_forward(unet.down_blocks, 0)
cross_attention_idx = change_forward(unet.mid_block, cross_attention_idx)
cross_attention_idx = change_forward(unet.up_blocks, cross_attention_idx)
print(f'Number of attention layer registered {cross_attention_idx}')
class RegionallyT2IAdapterPipeline(StableDiffusionAdapterPipeline):
_optional_components = ['safety_checker', 'feature_extractor']
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = False,
):
if safety_checker is None and requires_safety_checker:
logger.warning(
f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .'
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
'Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety'
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.new_concept_cfg = None
revise_regionally_t2iadapter_attention_forward(self.unet)
def set_new_concept_cfg(self, new_concept_cfg=None):
self.new_concept_cfg = new_concept_cfg
def _encode_region_prompt(self,
prompt,
new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
height=512,
width=512
):
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
assert batch_size == 1, 'only sample one prompt once in this version'
if prompt_embeds is None:
context_prompt, region_list = prompt[0][0], prompt[0][1]
context_prompt = bind_concept_prompt([context_prompt], new_concept_cfg)
context_prompt_input_ids = self.tokenizer(
context_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt',
).input_ids
prompt_embeds = self.text_encoder(context_prompt_input_ids.to(device), attention_mask=None)[0]
prompt_embeds = rearrange(prompt_embeds, '(b n) m c -> b n m c', b=batch_size)
prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, layer_num, seq_len, _ = prompt_embeds.shape
if negative_prompt is None:
negative_prompt = [''] * batch_size
negative_prompt_input_ids = self.tokenizer(
negative_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt').input_ids
negative_prompt_embeds = self.text_encoder(
negative_prompt_input_ids.to(device),
attention_mask=None,
)[0]
negative_prompt_embeds = (negative_prompt_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
for idx, region in enumerate(region_list):
region_prompt, region_neg_prompt, pos = region
region_prompt = bind_concept_prompt([region_prompt], new_concept_cfg)
region_prompt_input_ids = self.tokenizer(
region_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt').input_ids
region_embeds = self.text_encoder(region_prompt_input_ids.to(device), attention_mask=None)[0]
region_embeds = rearrange(region_embeds, '(b n) m c -> b n m c', b=batch_size)
region_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, layer_num, seq_len, _ = region_embeds.shape
if region_neg_prompt is None:
region_neg_prompt = [''] * batch_size
region_negprompt_input_ids = self.tokenizer(
region_neg_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt').input_ids
region_neg_embeds = self.text_encoder(region_negprompt_input_ids.to(device), attention_mask=None)[0]
region_neg_embeds = (region_neg_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
region_neg_embeds.to(dtype=self.text_encoder.dtype, device=device)
region_list[idx] = (torch.cat([region_neg_embeds, region_embeds]), pos)
return prompt_embeds, region_list
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
keypose_adapter_input: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
keypose_adaptor_weight=1.0,
region_keypose_adaptor_weight='',
sketch_adapter_input: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
sketch_adaptor_weight=1.0,
region_sketch_adaptor_weight='',
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = 'pil',
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
accepted as an image. The control image is automatically resized to fit the output image.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the
residual in the original unet. If multiple adapters are specified in init, you can set the
corresponding scale as a list.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
element is a list of `bool`s denoting whether the corresponding generated image likely represents
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
device = self._execution_device
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
if keypose_adapter_input is not None:
keypose_input = _preprocess_adapter_image(keypose_adapter_input, height, width).to(self.device)
keypose_input = keypose_input.to(self.keypose_adapter.dtype)
else:
keypose_input = None
if sketch_adapter_input is not None:
sketch_input = _preprocess_adapter_image(sketch_adapter_input, height, width).to(self.device)
sketch_input = sketch_input.to(self.sketch_adapter.dtype)
else:
sketch_input = None
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
assert self.new_concept_cfg is not None
prompt_embeds, region_list = self._encode_region_prompt(
prompt,
self.new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
height=height,
width=width
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
if keypose_input is not None:
keypose_adapter_state = self.keypose_adapter(keypose_input)
else:
keypose_adapter_state = None
if sketch_input is not None:
sketch_adapter_state = self.sketch_adapter(sketch_input)
else:
sketch_adapter_state = None
num_states = len(keypose_adapter_state) if keypose_adapter_state is not None else len(sketch_adapter_state)
adapter_state = []
for idx in range(num_states):
if keypose_adapter_state is not None:
feat_keypose = keypose_adapter_state[idx]
spatial_adaptor_weight = keypose_adaptor_weight * torch.ones(*feat_keypose.shape[2:]).to(
feat_keypose.dtype).to(feat_keypose.device)
if region_keypose_adaptor_weight != '':
region_list = region_keypose_adaptor_weight.split('|')
for region_weight in region_list:
region, weight = region_weight.split('-')
region = eval(region)
weight = eval(weight)
feat_height, feat_width = feat_keypose.shape[2:]
start_h, start_w, end_h, end_w = region
start_h, end_h = start_h / height, end_h / height
start_w, end_w = start_w / width, end_w / width
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
spatial_adaptor_weight[start_h:end_h, start_w:end_w] = weight
feat_keypose = spatial_adaptor_weight * feat_keypose
else:
feat_keypose = 0
if sketch_adapter_state is not None:
feat_sketch = sketch_adapter_state[idx]
# print(feat_keypose.shape) # torch.Size([1, 320, 64, 128])
spatial_adaptor_weight = sketch_adaptor_weight * torch.ones(*feat_sketch.shape[2:]).to(
feat_sketch.dtype).to(feat_sketch.device)
if region_sketch_adaptor_weight != '':
region_list = region_sketch_adaptor_weight.split('|')
for region_weight in region_list:
region, weight = region_weight.split('-')
region = eval(region)
weight = eval(weight)
feat_height, feat_width = feat_sketch.shape[2:]
start_h, start_w, end_h, end_w = region
start_h, end_h = start_h / height, end_h / height
start_w, end_w = start_w / width, end_w / width
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
spatial_adaptor_weight[start_h:end_h, start_w:end_w] = weight
feat_sketch = spatial_adaptor_weight * feat_sketch
else:
feat_sketch = 0
adapter_state.append(feat_keypose + feat_sketch)
if do_classifier_free_guidance:
for k, v in enumerate(adapter_state):
adapter_state[k] = torch.cat([v] * 2, dim=0)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={
'region_list': region_list,
'height': height,
'width': width,
},
down_block_additional_residuals=[state.clone() for state in adapter_state],
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == 'latent':
image = latents
has_nsfw_concept = None
elif output_type == 'pil':
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload last model to CPU
if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionAdapterPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|