File size: 14,750 Bytes
8e12b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from diffusers import StableDiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate
from einops import rearrange
from packaging import version
from transformers import CLIPTextModel, CLIPTokenizer
from mixofshow.models.edlora import (revise_edlora_unet_attention_controller_forward,
revise_edlora_unet_attention_forward)
def bind_concept_prompt(prompts, new_concept_cfg):
if isinstance(prompts, str):
prompts = [prompts]
new_prompts = []
for prompt in prompts:
prompt = [prompt] * 16
for concept_name, new_token_cfg in new_concept_cfg.items():
prompt = [
p.replace(concept_name, new_name) for p, new_name in zip(prompt, new_token_cfg['concept_token_names'])
]
new_prompts.extend(prompt)
return new_prompts
class EDLoRAPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker=None,
feature_extractor=None,
requires_safety_checker: bool = False,
):
if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1:
deprecation_message = (
f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'
f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '
'to update the config accordingly as leaving `steps_offset` might led to incorrect results'
' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'
' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'
' file'
)
deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config['steps_offset'] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True:
deprecation_message = (
f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`.'
' `clip_sample` should be set to False in the configuration file. Please make sure to update the'
' config accordingly as not setting `clip_sample` in the config might lead to incorrect results in'
' future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very'
' nice if you could open a Pull request for the `scheduler/scheduler_config.json` file'
)
deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config['clip_sample'] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse('0.9.0.dev0')
is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
'The configuration file of the unet has set the default `sample_size` to smaller than'
' 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the'
' following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-'
' CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5'
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
' configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`'
' in the config might lead to incorrect results in future versions. If you have downloaded this'
' checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for'
' the `unet/config.json` file'
)
deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config['sample_size'] = 64
unet._internal_dict = FrozenDict(new_config)
revise_edlora_unet_attention_forward(unet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.new_concept_cfg = None
def set_new_concept_cfg(self, new_concept_cfg=None):
self.new_concept_cfg = new_concept_cfg
def set_controller(self, controller):
self.controller = controller
revise_edlora_unet_attention_controller_forward(self.unet, controller)
def _encode_prompt(self,
prompt,
new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None
):
assert num_images_per_prompt == 1, 'only support num_images_per_prompt=1 now'
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_extend = bind_concept_prompt(prompt, new_concept_cfg)
text_inputs = self.tokenizer(
prompt_extend,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt',
)
text_input_ids = text_inputs.input_ids
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
prompt_embeds = rearrange(prompt_embeds, '(b n) m c -> b n m c', b=batch_size)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, layer_num, seq_len, _ = prompt_embeds.shape
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [''] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !='
f' {type(prompt)}.')
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:'
f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
' the batch size of `prompt`.')
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding='max_length',
max_length=seq_len,
truncation=True,
return_tensors='pt',
)
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device))[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = (negative_prompt_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = 'pil',
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt, this support pplus and edlora (layer-wise embedding)
assert self.new_concept_cfg is not None
prompt_embeds = self._encode_prompt(
prompt,
self.new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if hasattr(self, 'controller'):
dtype = latents.dtype
latents = self.controller.step_callback(latents)
latents = latents.to(dtype)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == 'latent':
image = latents
elif output_type == 'pil':
# 8. Post-processing
image = self.decode_latents(latents)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# Offload last model to CPU
if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|