File size: 14,750 Bytes
8e12b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from typing import Any, Callable, Dict, List, Optional, Union

import torch
from diffusers import StableDiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate
from einops import rearrange
from packaging import version
from transformers import CLIPTextModel, CLIPTokenizer

from mixofshow.models.edlora import (revise_edlora_unet_attention_controller_forward,
                                     revise_edlora_unet_attention_forward)


def bind_concept_prompt(prompts, new_concept_cfg):
    if isinstance(prompts, str):
        prompts = [prompts]
    new_prompts = []
    for prompt in prompts:
        prompt = [prompt] * 16
        for concept_name, new_token_cfg in new_concept_cfg.items():
            prompt = [
                p.replace(concept_name, new_name) for p, new_name in zip(prompt, new_token_cfg['concept_token_names'])
            ]
        new_prompts.extend(prompt)
    return new_prompts


class EDLoRAPipeline(StableDiffusionPipeline):

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker=None,
        feature_extractor=None,
        requires_safety_checker: bool = False,
    ):
        if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'
                f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '
                'to update the config accordingly as leaving `steps_offset` might led to incorrect results'
                ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'
                ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'
                ' file'
            )
            deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config['steps_offset'] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True:
            deprecation_message = (
                f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`.'
                ' `clip_sample` should be set to False in the configuration file. Please make sure to update the'
                ' config accordingly as not setting `clip_sample` in the config might lead to incorrect results in'
                ' future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very'
                ' nice if you could open a Pull request for the `scheduler/scheduler_config.json` file'
            )
            deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config['clip_sample'] = False
            scheduler._internal_dict = FrozenDict(new_config)

        is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse('0.9.0.dev0')
        is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                'The configuration file of the unet has set the default `sample_size` to smaller than'
                ' 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the'
                ' following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-'
                ' CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5'
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                ' configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`'
                ' in the config might lead to incorrect results in future versions. If you have downloaded this'
                ' checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for'
                ' the `unet/config.json` file'
            )
            deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config['sample_size'] = 64
            unet._internal_dict = FrozenDict(new_config)

        revise_edlora_unet_attention_forward(unet)
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.new_concept_cfg = None

    def set_new_concept_cfg(self, new_concept_cfg=None):
        self.new_concept_cfg = new_concept_cfg

    def set_controller(self, controller):
        self.controller = controller
        revise_edlora_unet_attention_controller_forward(self.unet, controller)

    def _encode_prompt(self,
        prompt,
        new_concept_cfg,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None
    ):

        assert num_images_per_prompt == 1, 'only support num_images_per_prompt=1 now'

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:

            prompt_extend = bind_concept_prompt(prompt, new_concept_cfg)

            text_inputs = self.tokenizer(
                prompt_extend,
                padding='max_length',
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors='pt',
            )
            text_input_ids = text_inputs.input_ids

            prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
            prompt_embeds = rearrange(prompt_embeds, '(b n) m c -> b n m c', b=batch_size)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        bs_embed, layer_num, seq_len, _ = prompt_embeds.shape

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [''] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !='
                                f' {type(prompt)}.')
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:'
                    f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
                    ' the batch size of `prompt`.')
            else:
                uncond_tokens = negative_prompt

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding='max_length',
                max_length=seq_len,
                truncation=True,
                return_tensors='pt',
            )

            negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device))[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
            negative_prompt_embeds = (negative_prompt_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        return prompt_embeds

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = 'pil',
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ):

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt, this support pplus and edlora (layer-wise embedding)
        assert self.new_concept_cfg is not None
        prompt_embeds = self._encode_prompt(
            prompt,
            self.new_concept_cfg,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                if hasattr(self, 'controller'):
                    dtype = latents.dtype
                    latents = self.controller.step_callback(latents)
                    latents = latents.to(dtype)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if output_type == 'latent':
            image = latents
        elif output_type == 'pil':
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

        # Offload last model to CPU
        if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)