ortha / weight_fusion.py
ujin-song's picture
upload .py files at root dir
b7e867a verified
raw
history blame
27.3 kB
import argparse
import copy
import itertools
import json
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from diffusers import DDPMScheduler, DPMSolverMultistepScheduler, StableDiffusionPipeline
from tqdm import tqdm
from mixofshow.models.edlora import revise_edlora_unet_attention_forward
from mixofshow.pipelines.pipeline_edlora import bind_concept_prompt
from mixofshow.utils.util import set_logger
TEMPLATE_SIMPLE = 'photo of a {}'
def chunk_compute_mse(K_target, V_target, W, device, chunk_size=5000):
num_chunks = (K_target.size(0) + chunk_size - 1) // chunk_size
loss = 0
for i in range(num_chunks):
# Extract the current chunk
start_idx = i * chunk_size
end_idx = min(start_idx + chunk_size, K_target.size(0))
loss += F.mse_loss(
F.linear(K_target[start_idx:end_idx].to(device), W),
V_target[start_idx:end_idx].to(device)) * (end_idx - start_idx)
loss /= K_target.size(0)
return loss
def update_quasi_newton(K_target, V_target, W, iters, device):
'''
Args:
K: torch.Tensor, size [n_samples, n_features]
V: torch.Tensor, size [n_samples, n_targets]
K_target: torch.Tensor, size [n_constraints, n_features]
V_target: torch.Tensor, size [n_constraints, n_targets]
W: torch.Tensor, size [n_targets, n_features]
Returns:
Wnew: torch.Tensor, size [n_targets, n_features]
'''
W = W.detach()
V_target = V_target.detach()
K_target = K_target.detach()
W.requires_grad = True
K_target.requires_grad = False
V_target.requires_grad = False
best_loss = np.Inf
best_W = None
def closure():
nonlocal best_W, best_loss
optimizer.zero_grad()
if len(W.shape) == 4:
loss = F.mse_loss(F.conv2d(K_target.to(device), W),
V_target.to(device))
else:
loss = chunk_compute_mse(K_target, V_target, W, device)
if loss < best_loss:
best_loss = loss
best_W = W.clone().cpu()
loss.backward()
return loss
optimizer = optim.LBFGS([W],
lr=1,
max_iter=iters,
history_size=25,
line_search_fn='strong_wolfe',
tolerance_grad=1e-16,
tolerance_change=1e-16)
optimizer.step(closure)
with torch.no_grad():
if len(W.shape) == 4:
loss = torch.norm(
F.conv2d(K_target.to(torch.float32), best_W.to(torch.float32)) - V_target.to(torch.float32), 2, dim=1)
else:
loss = torch.norm(
F.linear(K_target.to(torch.float32), best_W.to(torch.float32)) - V_target.to(torch.float32), 2, dim=1)
logging.info('new_concept loss: %e' % loss.mean().item())
return best_W
def merge_lora_into_weight(original_state_dict, lora_state_dict, modification_layer_names, model_type, alpha, device):
def get_lora_down_name(original_layer_name):
if model_type == 'text_encoder':
lora_down_name = original_layer_name.replace('q_proj.weight', 'q_proj.lora_down.weight') \
.replace('k_proj.weight', 'k_proj.lora_down.weight') \
.replace('v_proj.weight', 'v_proj.lora_down.weight') \
.replace('out_proj.weight', 'out_proj.lora_down.weight') \
.replace('fc1.weight', 'fc1.lora_down.weight') \
.replace('fc2.weight', 'fc2.lora_down.weight')
else:
lora_down_name = k.replace('to_q.weight', 'to_q.lora_down.weight') \
.replace('to_k.weight', 'to_k.lora_down.weight') \
.replace('to_v.weight', 'to_v.lora_down.weight') \
.replace('to_out.0.weight', 'to_out.0.lora_down.weight') \
.replace('ff.net.0.proj.weight', 'ff.net.0.proj.lora_down.weight') \
.replace('ff.net.2.weight', 'ff.net.2.lora_down.weight') \
.replace('proj_out.weight', 'proj_out.lora_down.weight') \
.replace('proj_in.weight', 'proj_in.lora_down.weight')
return lora_down_name
assert model_type in ['unet', 'text_encoder']
new_state_dict = copy.deepcopy(original_state_dict)
load_cnt = 0
for k in modification_layer_names:
lora_down_name = get_lora_down_name(k)
lora_up_name = lora_down_name.replace('lora_down', 'lora_up')
if lora_up_name in lora_state_dict:
load_cnt += 1
original_params = new_state_dict[k]
lora_down_params = lora_state_dict[lora_down_name].to(device)
lora_up_params = lora_state_dict[lora_up_name].to(device)
if len(original_params.shape) == 4:
lora_param = lora_up_params.squeeze(
) @ lora_down_params.squeeze()
lora_param = lora_param.unsqueeze(-1).unsqueeze(-1)
else:
lora_param = lora_up_params @ lora_down_params
merge_params = original_params + alpha * lora_param
new_state_dict[k] = merge_params
logging.info(f'load {load_cnt} LoRAs of {model_type}')
return new_state_dict
module_io_recoder = {}
record_feature = False # remember to set record feature
def get_hooker(module_name):
def hook(module, feature_in, feature_out):
if module_name not in module_io_recoder:
module_io_recoder[module_name] = {'input': [], 'output': []}
if record_feature:
module_io_recoder[module_name]['input'].append(feature_in[0].cpu())
if module.bias is not None:
if len(feature_out.shape) == 4:
bias = module.bias.unsqueeze(-1).unsqueeze(-1)
else:
bias = module.bias
module_io_recoder[module_name]['output'].append(
(feature_out - bias).cpu()) # remove bias
else:
module_io_recoder[module_name]['output'].append(
feature_out.cpu())
return hook
def init_stable_diffusion(pretrained_model_path, device):
# step1: get w0 parameters
model_id = pretrained_model_path
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
train_scheduler = DDPMScheduler.from_pretrained(model_id, subfolder='scheduler')
test_scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder='scheduler')
pipe.safety_checker = None
pipe.scheduler = test_scheduler
return pipe, train_scheduler, test_scheduler
@torch.no_grad()
def get_text_feature(prompts, tokenizer, text_encoder, device, return_type='category_embedding'):
text_features = []
if return_type == 'category_embedding':
for text in prompts:
tokens = tokenizer(
text,
truncation=True,
max_length=tokenizer.model_max_length,
return_length=True,
return_overflowing_tokens=False,
padding='do_not_pad',
).input_ids
new_token_position = torch.where(torch.tensor(tokens) >= 49407)[0]
# >40497 not include end token | >=40497 include end token
concept_feature = text_encoder(
torch.LongTensor(tokens).reshape(
1, -1).to(device))[0][:,
new_token_position].reshape(-1, 768)
text_features.append(concept_feature)
return torch.cat(text_features, 0).float()
elif return_type == 'full_embedding':
text_input = tokenizer(prompts,
padding='max_length',
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors='pt')
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
return text_embeddings
else:
raise NotImplementedError
def merge_new_concepts_(embedding_list, concept_list, tokenizer, text_encoder):
def add_new_concept(concept_name, embedding):
new_token_names = [
f'<new{start_idx + layer_id}>'
for layer_id in range(NUM_CROSS_ATTENTION_LAYERS)
]
num_added_tokens = tokenizer.add_tokens(new_token_names)
assert num_added_tokens == NUM_CROSS_ATTENTION_LAYERS
new_token_ids = [
tokenizer.convert_tokens_to_ids(token_name)
for token_name in new_token_names
]
text_encoder.resize_token_embeddings(len(tokenizer))
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[new_token_ids] = token_embeds[new_token_ids].copy_(
embedding[concept_name])
embedding_features.update({concept_name: embedding[concept_name]})
logging.info(
f'concept {concept_name} is bind with token_id: [{min(new_token_ids)}, {max(new_token_ids)}]'
)
return start_idx + NUM_CROSS_ATTENTION_LAYERS, new_token_ids, new_token_names
embedding_features = {}
new_concept_cfg = {}
start_idx = 0
NUM_CROSS_ATTENTION_LAYERS = 16
for idx, (embedding,
concept) in enumerate(zip(embedding_list, concept_list)):
concept_names = concept['concept_name'].split(' ')
for concept_name in concept_names:
if not concept_name.startswith('<'):
continue
else:
assert concept_name in embedding, 'check the config, the provide concept name is not in the lora model'
start_idx, new_token_ids, new_token_names = add_new_concept(
concept_name, embedding)
new_concept_cfg.update({
concept_name: {
'concept_token_ids': new_token_ids,
'concept_token_names': new_token_names
}
})
return embedding_features, new_concept_cfg
def parse_new_concepts(concept_cfg):
with open(concept_cfg, 'r') as f:
concept_list = json.load(f)
model_paths = [concept['lora_path'] for concept in concept_list]
embedding_list = []
text_encoder_list = []
unet_crosskv_list = []
unet_spatial_attn_list = []
for model_path in model_paths:
model = torch.load(model_path)['params']
if 'new_concept_embedding' in model and len(
model['new_concept_embedding']) != 0:
embedding_list.append(model['new_concept_embedding'])
else:
embedding_list.append(None)
if 'text_encoder' in model and len(model['text_encoder']) != 0:
text_encoder_list.append(model['text_encoder'])
else:
text_encoder_list.append(None)
if 'unet' in model and len(model['unet']) != 0:
crosskv_matches = ['attn2.to_k.lora', 'attn2.to_v.lora']
crosskv_dict = {
k: v
for k, v in model['unet'].items()
if any([x in k for x in crosskv_matches])
}
if len(crosskv_dict) != 0:
unet_crosskv_list.append(crosskv_dict)
else:
unet_crosskv_list.append(None)
spatial_attn_dict = {
k: v
for k, v in model['unet'].items()
if all([x not in k for x in crosskv_matches])
}
if len(spatial_attn_dict) != 0:
unet_spatial_attn_list.append(spatial_attn_dict)
else:
unet_spatial_attn_list.append(None)
else:
unet_crosskv_list.append(None)
unet_spatial_attn_list.append(None)
return embedding_list, text_encoder_list, unet_crosskv_list, unet_spatial_attn_list, concept_list
def merge_kv_in_cross_attention(concept_list, optimize_iters, new_concept_cfg,
tokenizer, text_encoder, unet,
unet_crosskv_list, device):
# crosskv attention layer names
matches = ['attn2.to_k', 'attn2.to_v']
cross_attention_idx = -1
cross_kv_layer_names = []
# the crosskv name should match the order down->mid->up, and record its layer id
for name, _ in unet.down_blocks.named_parameters():
if any([x in name for x in matches]):
if 'to_k' in name:
cross_attention_idx += 1
cross_kv_layer_names.append(
(cross_attention_idx, 'down_blocks.' + name))
cross_kv_layer_names.append(
(cross_attention_idx,
'down_blocks.' + name.replace('to_k', 'to_v')))
else:
pass
for name, _ in unet.mid_block.named_parameters():
if any([x in name for x in matches]):
if 'to_k' in name:
cross_attention_idx += 1
cross_kv_layer_names.append(
(cross_attention_idx, 'mid_block.' + name))
cross_kv_layer_names.append(
(cross_attention_idx,
'mid_block.' + name.replace('to_k', 'to_v')))
else:
pass
for name, _ in unet.up_blocks.named_parameters():
if any([x in name for x in matches]):
if 'to_k' in name:
cross_attention_idx += 1
cross_kv_layer_names.append(
(cross_attention_idx, 'up_blocks.' + name))
cross_kv_layer_names.append(
(cross_attention_idx,
'up_blocks.' + name.replace('to_k', 'to_v')))
else:
pass
logging.info(
f'Unet have {len(cross_kv_layer_names)} linear layer (related to text feature) need to optimize'
)
original_unet_state_dict = unet.state_dict() # original state dict
concept_weights_dict = {}
# step 1: construct prompts for new concept -> extract input/target features
for concept, tuned_state_dict in zip(concept_list, unet_crosskv_list):
for layer_idx, layer_name in cross_kv_layer_names:
# merge params
original_params = original_unet_state_dict[layer_name]
# hard coded here: in unet, self/crosskv attention disable bias parameter
lora_down_name = layer_name.replace('to_k.weight', 'to_k.lora_down.weight').replace('to_v.weight', 'to_v.lora_down.weight')
lora_up_name = lora_down_name.replace('lora_down', 'lora_up')
alpha = concept['unet_alpha']
lora_down_params = tuned_state_dict[lora_down_name].to(device)
lora_up_params = tuned_state_dict[lora_up_name].to(device)
merge_params = original_params + alpha * lora_up_params @ lora_down_params
if layer_name not in concept_weights_dict:
concept_weights_dict[layer_name] = []
concept_weights_dict[layer_name].append(merge_params)
new_kv_weights = {}
# step 3: begin update model
for idx, (layer_idx, layer_name) in enumerate(cross_kv_layer_names):
Wnew = torch.stack(concept_weights_dict[layer_name])
Wnew = torch.mean(Wnew, dim = 0)
new_kv_weights[layer_name] = Wnew
return new_kv_weights
def merge_text_encoder(concept_list, optimize_iters, new_concept_cfg,
tokenizer, text_encoder, text_encoder_list, device):
LoRA_keys = []
for textenc_lora in text_encoder_list:
LoRA_keys += list(textenc_lora.keys())
LoRA_keys = set([
key.replace('.lora_down', '').replace('.lora_up', '')
for key in LoRA_keys
])
text_encoder_layer_names = LoRA_keys
candidate_module_name = [
'q_proj', 'k_proj', 'v_proj', 'out_proj', 'fc1', 'fc2'
]
candidate_module_name = [
name for name in candidate_module_name
if any([name in key for key in LoRA_keys])
]
logging.info(f'text_encoder have {len(text_encoder_layer_names)} linear layer need to optimize')
global module_io_recoder, record_feature
hooker_handlers = []
for name, module in text_encoder.named_modules():
if any([item in name for item in candidate_module_name]):
hooker_handlers.append(module.register_forward_hook(hook=get_hooker(name)))
logging.info(f'add {len(hooker_handlers)} hooker to text_encoder')
original_state_dict = copy.deepcopy(text_encoder.state_dict()) # original state dict
new_concept_input_dict = {}
new_concept_output_dict = {}
concept_weights_dict = {}
for concept, lora_state_dict in zip(concept_list, text_encoder_list):
merged_state_dict = merge_lora_into_weight(
original_state_dict,
lora_state_dict,
text_encoder_layer_names,
model_type='text_encoder',
alpha=concept['text_encoder_alpha'],
device=device)
text_encoder.load_state_dict(merged_state_dict) # load merged parameters
# we use different model to compute new concept feature
for layer_name in text_encoder_layer_names:
if layer_name not in concept_weights_dict:
concept_weights_dict[layer_name] = []
concept_weights_dict[layer_name].append(merged_state_dict[layer_name])
new_text_encoder_weights = {}
# step 3: begin update model
for idx, layer_name in enumerate(text_encoder_layer_names):
Wnew = torch.stack(concept_weights_dict[layer_name])
Wnew = torch.mean(Wnew, dim = 0)
new_text_encoder_weights[layer_name] = Wnew
logging.info(f'remove {len(hooker_handlers)} hooker from text_encoder')
# remove forward hooker
for hook_handle in hooker_handlers:
hook_handle.remove()
return new_text_encoder_weights
@torch.no_grad()
def decode_to_latents(concept_prompt, new_concept_cfg, tokenizer, text_encoder,
unet, test_scheduler, num_inference_steps, device,
record_nums, batch_size):
concept_prompt = bind_concept_prompt([concept_prompt], new_concept_cfg)
text_embeddings = get_text_feature(
concept_prompt,
tokenizer,
text_encoder,
device,
return_type='full_embedding').unsqueeze(0)
text_embeddings = text_embeddings.repeat((batch_size, 1, 1, 1))
# sd 1.x
height = 512
width = 512
latents = torch.randn((batch_size, unet.in_channels, height // 8, width // 8), )
latents = latents.to(device, dtype=text_embeddings.dtype)
test_scheduler.set_timesteps(num_inference_steps)
latents = latents * test_scheduler.init_noise_sigma
global record_feature
step = (test_scheduler.timesteps.size(0)) // record_nums
record_timestep = test_scheduler.timesteps[torch.arange(0, test_scheduler.timesteps.size(0), step=step)[:record_nums]]
for t in tqdm(test_scheduler.timesteps):
if t in record_timestep:
record_feature = True
else:
record_feature = False
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = latents
latent_model_input = test_scheduler.scale_model_input(latent_model_input, t)
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# compute the previous noisy sample x_t -> x_t-1
latents = test_scheduler.step(noise_pred, t, latents).prev_sample
return latents, text_embeddings
def merge_spatial_attention(concept_list, optimize_iters, new_concept_cfg, tokenizer, text_encoder, unet, unet_spatial_attn_list, test_scheduler, device):
LoRA_keys = []
for unet_lora in unet_spatial_attn_list:
LoRA_keys += list(unet_lora.keys())
LoRA_keys = set([
key.replace('.lora_down', '').replace('.lora_up', '')
for key in LoRA_keys
])
spatial_attention_layer_names = LoRA_keys
candidate_module_name = [
'attn2.to_q', 'attn2.to_out.0', 'attn1.to_q', 'attn1.to_k',
'attn1.to_v', 'attn1.to_out.0', 'ff.net.2', 'ff.net.0.proj',
'proj_out', 'proj_in'
]
candidate_module_name = [
name for name in candidate_module_name
if any([name in key for key in LoRA_keys])
]
logging.info(
f'unet have {len(spatial_attention_layer_names)} linear layer need to optimize'
)
global module_io_recoder
hooker_handlers = []
for name, module in unet.named_modules():
if any([x in name for x in candidate_module_name]):
hooker_handlers.append(
module.register_forward_hook(hook=get_hooker(name)))
logging.info(f'add {len(hooker_handlers)} hooker to unet')
original_state_dict = copy.deepcopy(unet.state_dict()) # original state dict
revise_edlora_unet_attention_forward(unet)
concept_weights_dict = {}
for concept, tuned_state_dict in zip(concept_list, unet_spatial_attn_list):
# set unet
module_io_recoder = {} # reinit module io recorder
merged_state_dict = merge_lora_into_weight(
original_state_dict,
tuned_state_dict,
spatial_attention_layer_names,
model_type='unet',
alpha=concept['unet_alpha'],
device=device)
unet.load_state_dict(merged_state_dict) # load merged parameters
concept_name = concept['concept_name']
concept_prompt = TEMPLATE_SIMPLE.format(concept_name)
for layer_name in spatial_attention_layer_names:
if layer_name not in concept_weights_dict:
concept_weights_dict[layer_name] = []
concept_weights_dict[layer_name].append(merged_state_dict[layer_name])
new_spatial_attention_weights = {}
# step 5: begin update model
for idx, layer_name in enumerate(spatial_attention_layer_names):
Wnew = torch.stack(concept_weights_dict[layer_name])
Wnew = torch.mean(Wnew, dim = 0)
new_spatial_attention_weights[layer_name] = Wnew
logging.info(f'remove {len(hooker_handlers)} hooker from unet')
for hook_handle in hooker_handlers:
hook_handle.remove()
return new_spatial_attention_weights
def compose_concepts(concept_cfg, optimize_textenc_iters, optimize_unet_iters, pretrained_model_path, save_path, suffix, device):
logging.info('------Step 1: load stable diffusion checkpoint------')
pipe, train_scheduler, test_scheduler = init_stable_diffusion(pretrained_model_path, device)
tokenizer, text_encoder, unet, vae = pipe.tokenizer, pipe.text_encoder, pipe.unet, pipe.vae
for param in itertools.chain(text_encoder.parameters(), unet.parameters(), vae.parameters()):
param.requires_grad = False
logging.info('------Step 2: load new concepts checkpoints------')
embedding_list, text_encoder_list, unet_crosskv_list, unet_spatial_attn_list, concept_list = parse_new_concepts(concept_cfg)
# step 1: inplace add new concept to tokenizer and embedding layers of text encoder
if any([item is not None for item in embedding_list]):
logging.info('------Step 3: merge token embedding------')
_, new_concept_cfg = merge_new_concepts_(embedding_list, concept_list, tokenizer, text_encoder)
else:
_, new_concept_cfg = {}, {}
logging.info('------Step 3: no new embedding, skip merging token embedding------')
# step 2: construct reparameterized text_encoder
if any([item is not None for item in text_encoder_list]):
logging.info('------Step 4: merge text encoder------')
new_text_encoder_weights = merge_text_encoder(
concept_list, optimize_textenc_iters, new_concept_cfg, tokenizer,
text_encoder, text_encoder_list, device)
# update the merged state_dict in text_encoder
text_encoder_state_dict = text_encoder.state_dict()
text_encoder_state_dict.update(new_text_encoder_weights)
text_encoder.load_state_dict(text_encoder_state_dict)
else:
new_text_encoder_weights = {}
logging.info('------Step 4: no new text encoder, skip merging text encoder------')
# step 3: merge unet (k,v in crosskv-attention) params, since they only receive input from text-encoder
if any([item is not None for item in unet_crosskv_list]):
logging.info('------Step 5: merge kv of cross-attention in unet------')
new_kv_weights = merge_kv_in_cross_attention(
concept_list, optimize_textenc_iters, new_concept_cfg,
tokenizer, text_encoder, unet, unet_crosskv_list, device)
# update the merged state_dict in kv of crosskv-attention in Unet
unet_state_dict = unet.state_dict()
unet_state_dict.update(new_kv_weights)
unet.load_state_dict(unet_state_dict)
else:
new_kv_weights = {}
logging.info('------Step 5: no new kv of cross-attention in unet, skip merging kv------')
# step 4: merge unet (q,k,v in self-attention, q in crosskv-attention)
if any([item is not None for item in unet_spatial_attn_list]):
logging.info('------Step 6: merge spatial attention (q in cross-attention, qkv in self-attention) in unet------')
new_spatial_attention_weights = merge_spatial_attention(
concept_list, optimize_unet_iters, new_concept_cfg, tokenizer,
text_encoder, unet, unet_spatial_attn_list, test_scheduler, device)
unet_state_dict = unet.state_dict()
unet_state_dict.update(new_spatial_attention_weights)
unet.load_state_dict(unet_state_dict)
else:
new_spatial_attention_weights = {}
logging.info('------Step 6: no new spatial-attention in unet, skip merging spatial attention------')
checkpoint_save_path = f'{save_path}/combined_model_{suffix}'
pipe.save_pretrained(checkpoint_save_path)
with open(os.path.join(checkpoint_save_path, 'new_concept_cfg.json'), 'w') as json_file:
json.dump(new_concept_cfg, json_file)
def parse_args():
parser = argparse.ArgumentParser('', add_help=False)
parser.add_argument('--concept_cfg', help='json file for multi-concept', required=True, type=str)
parser.add_argument('--save_path', help='folder name to save optimized weights', required=True, type=str)
parser.add_argument('--suffix', help='suffix name', default='base', type=str)
parser.add_argument('--pretrained_models', required=True, type=str)
parser.add_argument('--optimize_unet_iters', default=50, type=int)
parser.add_argument('--optimize_textenc_iters', default=500, type=int)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
# s1: set logger
exp_dir = f'{args.save_path}'
os.makedirs(exp_dir, exist_ok=True)
log_file = f'{exp_dir}/combined_model_{args.suffix}.log'
set_logger(log_file=log_file)
logging.info(args)
compose_concepts(args.concept_cfg,
args.optimize_textenc_iters,
args.optimize_unet_iters,
args.pretrained_models,
args.save_path,
args.suffix,
device='cuda')