ujin-song's picture
upload mixofshow and orthogonal_mats folder
8e12b4e verified
raw
history blame
10.5 kB
import datetime
import logging
import os
import os.path
import os.path as osp
import time
from collections import OrderedDict
import PIL
import torch
from accelerate.logging import get_logger
from accelerate.state import PartialState
from PIL import Image, ImageDraw, ImageFont
from torchvision.transforms.transforms import ToTensor
from torchvision.utils import make_grid
NEGATIVE_PROMPT = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
# ----------- file/logger util ----------
def get_time_str():
return time.strftime('%Y%m%d_%H%M%S', time.localtime())
def mkdir_and_rename(path):
"""mkdirs. If path exists, rename it with timestamp and create a new one.
Args:
path (str): Folder path.
"""
if osp.exists(path):
new_name = path + '_archived_' + get_time_str()
print(f'Path already exists. Rename it to {new_name}', flush=True)
os.rename(path, new_name)
os.makedirs(path, exist_ok=True)
def make_exp_dirs(opt):
"""Make dirs for experiments."""
path_opt = opt['path'].copy()
if opt['is_train']:
mkdir_and_rename(path_opt.pop('experiments_root'))
else:
mkdir_and_rename(path_opt.pop('results_root'))
for key, path in path_opt.items():
if ('strict_load' in key) or ('pretrain_network' in key) or (
'resume' in key) or ('param_key' in key) or ('lora_path' in key):
continue
else:
os.makedirs(path, exist_ok=True)
def copy_opt_file(opt_file, experiments_root):
# copy the yml file to the experiment root
import sys
import time
from shutil import copyfile
cmd = ' '.join(sys.argv)
filename = osp.join(experiments_root, osp.basename(opt_file))
copyfile(opt_file, filename)
with open(filename, 'r+') as f:
lines = f.readlines()
lines.insert(
0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n')
f.seek(0)
f.writelines(lines)
def set_path_logger(accelerator, root_path, config_path, opt, is_train=True):
opt['is_train'] = is_train
if is_train:
experiments_root = osp.join(root_path, 'experiments', opt['name'])
opt['path']['experiments_root'] = experiments_root
opt['path']['models'] = osp.join(experiments_root, 'models')
opt['path']['log'] = experiments_root
opt['path']['visualization'] = osp.join(experiments_root,
'visualization')
else:
results_root = osp.join(root_path, 'results', opt['name'])
opt['path']['results_root'] = results_root
opt['path']['log'] = results_root
opt['path']['visualization'] = osp.join(results_root, 'visualization')
# Handle the output folder creation
if accelerator.is_main_process:
make_exp_dirs(opt)
accelerator.wait_for_everyone()
if is_train:
copy_opt_file(config_path, opt['path']['experiments_root'])
log_file = osp.join(opt['path']['log'],
f"train_{opt['name']}_{get_time_str()}.log")
set_logger(log_file)
else:
copy_opt_file(config_path, opt['path']['results_root'])
log_file = osp.join(opt['path']['log'],
f"test_{opt['name']}_{get_time_str()}.log")
set_logger(log_file)
def set_logger(log_file=None):
# Make one log on every process with the configuration for debugging.
format_str = '%(asctime)s %(levelname)s: %(message)s'
log_level = logging.INFO
handlers = []
file_handler = logging.FileHandler(log_file, 'w')
file_handler.setFormatter(logging.Formatter(format_str))
file_handler.setLevel(log_level)
handlers.append(file_handler)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter(format_str))
handlers.append(stream_handler)
logging.basicConfig(handlers=handlers, level=log_level)
def dict2str(opt, indent_level=1):
"""dict to string for printing options.
Args:
opt (dict): Option dict.
indent_level (int): Indent level. Default: 1.
Return:
(str): Option string for printing.
"""
msg = '\n'
for k, v in opt.items():
if isinstance(v, dict):
msg += ' ' * (indent_level * 2) + k + ':['
msg += dict2str(v, indent_level + 1)
msg += ' ' * (indent_level * 2) + ']\n'
else:
msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
return msg
class MessageLogger():
"""Message logger for printing.
Args:
opt (dict): Config. It contains the following keys:
name (str): Exp name.
logger (dict): Contains 'print_freq' (str) for logger interval.
train (dict): Contains 'total_iter' (int) for total iters.
use_tb_logger (bool): Use tensorboard logger.
start_iter (int): Start iter. Default: 1.
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None.
"""
def __init__(self, opt, start_iter=1):
self.exp_name = opt['name']
self.interval = opt['logger']['print_freq']
self.start_iter = start_iter
self.max_iters = opt['train']['total_iter']
self.start_time = time.time()
self.logger = get_logger('mixofshow', log_level='INFO')
def reset_start_time(self):
self.start_time = time.time()
def __call__(self, log_vars):
"""Format logging message.
Args:
log_vars (dict): It contains the following keys:
epoch (int): Epoch number.
iter (int): Current iter.
lrs (list): List for learning rates.
time (float): Iter time.
data_time (float): Data time for each iter.
"""
# epoch, iter, learning rates
current_iter = log_vars.pop('iter')
lrs = log_vars.pop('lrs')
message = (
f'[{self.exp_name[:5]}..][Iter:{current_iter:8,d}, lr:('
)
for v in lrs:
message += f'{v:.3e},'
message += ')] '
# time and estimated time
total_time = time.time() - self.start_time
time_sec_avg = total_time / (current_iter - self.start_iter + 1)
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1)
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
message += f'[eta: {eta_str}] '
# other items, especially losses
for k, v in log_vars.items():
message += f'{k}: {v:.4e} '
self.logger.info(message)
def reduce_loss_dict(accelerator, loss_dict):
"""reduce loss dict.
In distributed training, it averages the losses among different GPUs .
Args:
loss_dict (OrderedDict): Loss dict.
"""
with torch.no_grad():
keys = []
losses = []
for name, value in loss_dict.items():
keys.append(name)
losses.append(value)
losses = torch.stack(losses, 0)
losses = accelerator.reduce(losses)
world_size = PartialState().num_processes
losses /= world_size
loss_dict = {key: loss for key, loss in zip(keys, losses)}
log_dict = OrderedDict()
for name, value in loss_dict.items():
log_dict[name] = value.mean().item()
return log_dict
def pil_imwrite(img, file_path, auto_mkdir=True):
"""Write image to file.
Args:
img (ndarray): Image array to be written.
file_path (str): Image file path.
params (None or list): Same as opencv's :func:`imwrite` interface.
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
whether to create it automatically.
Returns:
bool: Successful or not.
"""
assert isinstance(
img, PIL.Image.Image), 'model should return a list of PIL images'
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
img.save(file_path)
def draw_prompt(text, height, width, font_size=45):
img = Image.new('RGB', (width, height), (255, 255, 255))
draw = ImageDraw.Draw(img)
font = ImageFont.truetype(
osp.join(osp.dirname(osp.abspath(__file__)), 'arial.ttf'), font_size)
guess_count = 0
while font.font.getsize(text[:guess_count])[0][
0] + 0.1 * width < width - 0.1 * width and guess_count < len(
text): # centerize
guess_count += 1
text_new = ''
for idx, s in enumerate(text):
if idx % guess_count == 0:
text_new += '\n'
if s == ' ':
s = '' # new line trip the first space
text_new += s
draw.text([int(0.1 * width), int(0.3 * height)],
text_new,
font=font,
fill='black')
return img
def compose_visualize(dir_path):
file_list = sorted(os.listdir(dir_path))
img_list = []
info_dict = {'prompts': set(), 'sample_args': set(), 'suffix': set()}
for filename in file_list:
prompt, sample_args, index, suffix = osp.splitext(
osp.basename(filename))[0].split('---')
filepath = osp.join(dir_path, filename)
img = ToTensor()(Image.open(filepath))
height, width = img.shape[1:]
if prompt not in info_dict['prompts']:
img_list.append(ToTensor()(draw_prompt(prompt,
height=height,
width=width,
font_size=45)))
info_dict['prompts'].add(prompt)
info_dict['sample_args'].add(sample_args)
info_dict['suffix'].add(suffix)
img_list.append(img)
assert len(
info_dict['sample_args']
) == 1, 'compose dir should contain images form same sample args.'
assert len(info_dict['suffix']
) == 1, 'compose dir should contain images form same suffix.'
grid = make_grid(img_list, nrow=len(img_list) // len(info_dict['prompts']))
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to(
'cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
save_name = f"{info_dict['sample_args'].pop()}---{info_dict['suffix'].pop()}.jpg"
im.save(osp.join(osp.dirname(dir_path), save_name))