|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import deprecate |
|
from einops import rearrange |
|
from packaging import version |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from mixofshow.models.edlora import (revise_edlora_unet_attention_controller_forward, |
|
revise_edlora_unet_attention_forward) |
|
|
|
|
|
def bind_concept_prompt(prompts, new_concept_cfg): |
|
if isinstance(prompts, str): |
|
prompts = [prompts] |
|
new_prompts = [] |
|
for prompt in prompts: |
|
prompt = [prompt] * 16 |
|
for concept_name, new_token_cfg in new_concept_cfg.items(): |
|
prompt = [ |
|
p.replace(concept_name, new_name) for p, new_name in zip(prompt, new_token_cfg['concept_token_names']) |
|
] |
|
new_prompts.extend(prompt) |
|
return new_prompts |
|
|
|
|
|
class EDLoRAPipeline(StableDiffusionPipeline): |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker: bool = False, |
|
): |
|
if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' |
|
f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' |
|
'to update the config accordingly as leaving `steps_offset` might led to incorrect results' |
|
' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' |
|
' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' |
|
' file' |
|
) |
|
deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config['steps_offset'] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: |
|
deprecation_message = ( |
|
f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`.' |
|
' `clip_sample` should be set to False in the configuration file. Please make sure to update the' |
|
' config accordingly as not setting `clip_sample` in the config might lead to incorrect results in' |
|
' future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very' |
|
' nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' |
|
) |
|
deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config['clip_sample'] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse('0.9.0.dev0') |
|
is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
'The configuration file of the unet has set the default `sample_size` to smaller than' |
|
' 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the' |
|
' following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-' |
|
' CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5' |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
' configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`' |
|
' in the config might lead to incorrect results in future versions. If you have downloaded this' |
|
' checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for' |
|
' the `unet/config.json` file' |
|
) |
|
deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config['sample_size'] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
revise_edlora_unet_attention_forward(unet) |
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.new_concept_cfg = None |
|
|
|
def set_new_concept_cfg(self, new_concept_cfg=None): |
|
self.new_concept_cfg = new_concept_cfg |
|
|
|
def set_controller(self, controller): |
|
self.controller = controller |
|
revise_edlora_unet_attention_controller_forward(self.unet, controller) |
|
|
|
def _encode_prompt(self, |
|
prompt, |
|
new_concept_cfg, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None |
|
): |
|
|
|
assert num_images_per_prompt == 1, 'only support num_images_per_prompt=1 now' |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
prompt_extend = bind_concept_prompt(prompt, new_concept_cfg) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt_extend, |
|
padding='max_length', |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors='pt', |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] |
|
prompt_embeds = rearrange(prompt_embeds, '(b n) m c -> b n m c', b=batch_size) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
bs_embed, layer_num, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [''] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=' |
|
f' {type(prompt)}.') |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:' |
|
f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' |
|
' the batch size of `prompt`.') |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding='max_length', |
|
max_length=seq_len, |
|
truncation=True, |
|
return_tensors='pt', |
|
) |
|
|
|
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device))[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
negative_prompt_embeds = (negative_prompt_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
return prompt_embeds |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = 'pil', |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
assert self.new_concept_cfg is not None |
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
self.new_concept_cfg, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
if hasattr(self, 'controller'): |
|
dtype = latents.dtype |
|
latents = self.controller.step_callback(latents) |
|
latents = latents.to(dtype) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if output_type == 'latent': |
|
image = latents |
|
elif output_type == 'pil': |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image = self.numpy_to_pil(image) |
|
else: |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) |
|
|