ortha / mixofshow /data /pil_transform.py
ujin-song's picture
upload mixofshow and orthogonal_mats folder
8e12b4e verified
raw
history blame
13 kB
import inspect
import random
from copy import deepcopy
import cv2
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms.functional as F
from PIL import Image
from torchvision.transforms import CenterCrop, Normalize, RandomCrop, RandomHorizontalFlip, Resize
from torchvision.transforms.functional import InterpolationMode
from mixofshow.utils.registry import TRANSFORM_REGISTRY
def build_transform(opt):
"""Build performance evaluator from options.
Args:
opt (dict): Configuration.
"""
opt = deepcopy(opt)
transform_type = opt.pop('type')
transform = TRANSFORM_REGISTRY.get(transform_type)(**opt)
return transform
TRANSFORM_REGISTRY.register(Normalize)
TRANSFORM_REGISTRY.register(Resize)
TRANSFORM_REGISTRY.register(RandomHorizontalFlip)
TRANSFORM_REGISTRY.register(CenterCrop)
TRANSFORM_REGISTRY.register(RandomCrop)
@TRANSFORM_REGISTRY.register()
class BILINEARResize(Resize):
def __init__(self, size):
super(BILINEARResize,
self).__init__(size, interpolation=InterpolationMode.BILINEAR)
@TRANSFORM_REGISTRY.register()
class PairRandomCrop(nn.Module):
def __init__(self, size):
super().__init__()
if isinstance(size, int):
self.height, self.width = size, size
else:
self.height, self.width = size
def forward(self, img, **kwargs):
img_width, img_height = img.size
mask_width, mask_height = kwargs['mask'].size
assert img_height >= self.height and img_height == mask_height
assert img_width >= self.width and img_width == mask_width
x = random.randint(0, img_width - self.width)
y = random.randint(0, img_height - self.height)
img = F.crop(img, y, x, self.height, self.width)
kwargs['mask'] = F.crop(kwargs['mask'], y, x, self.height, self.width)
return img, kwargs
@TRANSFORM_REGISTRY.register()
class ToTensor(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, pic):
return F.to_tensor(pic)
def __repr__(self) -> str:
return f'{self.__class__.__name__}()'
@TRANSFORM_REGISTRY.register()
class PairRandomHorizontalFlip(torch.nn.Module):
def __init__(self, p=0.5):
super().__init__()
self.p = p
def forward(self, img, **kwargs):
if torch.rand(1) < self.p:
kwargs['mask'] = F.hflip(kwargs['mask'])
return F.hflip(img), kwargs
return img, kwargs
@TRANSFORM_REGISTRY.register()
class PairResize(nn.Module):
def __init__(self, size):
super().__init__()
self.resize = Resize(size=size)
def forward(self, img, **kwargs):
kwargs['mask'] = self.resize(kwargs['mask'])
img = self.resize(img)
return img, kwargs
class PairCompose(nn.Module):
def __init__(self, transforms):
super().__init__()
self.transforms = transforms
def __call__(self, img, **kwargs):
for t in self.transforms:
if len(inspect.signature(t.forward).parameters
) == 1: # count how many args, not count self
img = t(img)
else:
img, kwargs = t(img, **kwargs)
return img, kwargs
def __repr__(self) -> str:
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += f' {t}'
format_string += '\n)'
return format_string
@TRANSFORM_REGISTRY.register()
class HumanResizeCropFinalV3(nn.Module):
def __init__(self, size, crop_p=0.5):
super().__init__()
self.size = size
self.crop_p = crop_p
self.random_crop = RandomCrop(size=size)
self.paired_random_crop = PairRandomCrop(size=size)
def forward(self, img, **kwargs):
# step 1: short edge resize to 512
img = F.resize(img, size=self.size)
if 'mask' in kwargs:
kwargs['mask'] = F.resize(kwargs['mask'], size=self.size)
# step 2: random crop
width, height = img.size
if random.random() < self.crop_p:
if height > width:
crop_pos = random.randint(0, height - width)
img = F.crop(img, 0, 0, width + crop_pos, width)
if 'mask' in kwargs:
kwargs['mask'] = F.crop(kwargs['mask'], 0, 0, width + crop_pos, width)
else:
if 'mask' in kwargs:
img, kwargs = self.paired_random_crop(img, **kwargs)
else:
img = self.random_crop(img)
else:
img = img
# step 3: long edge resize
img = F.resize(img, size=self.size - 1, max_size=self.size)
if 'mask' in kwargs:
kwargs['mask'] = F.resize(kwargs['mask'], size=self.size - 1, max_size=self.size)
new_width, new_height = img.size
img = np.array(img)
if 'mask' in kwargs:
kwargs['mask'] = np.array(kwargs['mask']) / 255
new_width = min(new_width, kwargs['mask'].shape[1])
new_height = min(new_height, kwargs['mask'].shape[0])
start_y = random.randint(0, 512 - new_height)
start_x = random.randint(0, 512 - new_width)
res_img = np.zeros((self.size, self.size, 3), dtype=np.uint8)
res_mask = np.zeros((self.size, self.size))
res_img_mask = np.zeros((self.size, self.size))
res_img[start_y:start_y + new_height, start_x:start_x + new_width, :] = img[:new_height, :new_width]
if 'mask' in kwargs:
res_mask[start_y:start_y + new_height, start_x:start_x + new_width] = kwargs['mask'][:new_height, :new_width]
kwargs['mask'] = res_mask
res_img_mask[start_y:start_y + new_height, start_x:start_x + new_width] = 1
kwargs['img_mask'] = res_img_mask
img = Image.fromarray(res_img)
if 'mask' in kwargs:
kwargs['mask'] = cv2.resize(kwargs['mask'], (self.size // 8, self.size // 8), cv2.INTER_NEAREST)
kwargs['mask'] = torch.from_numpy(kwargs['mask'])
kwargs['img_mask'] = cv2.resize(kwargs['img_mask'], (self.size // 8, self.size // 8), cv2.INTER_NEAREST)
kwargs['img_mask'] = torch.from_numpy(kwargs['img_mask'])
return img, kwargs
@TRANSFORM_REGISTRY.register()
class ResizeFillMaskNew(nn.Module):
def __init__(self, size, crop_p, scale_ratio):
super().__init__()
self.size = size
self.crop_p = crop_p
self.scale_ratio = scale_ratio
self.random_crop = RandomCrop(size=size)
self.paired_random_crop = PairRandomCrop(size=size)
def forward(self, img, **kwargs):
# width, height = img.size
# step 1: short edge resize to 512
img = F.resize(img, size=self.size)
if 'mask' in kwargs:
kwargs['mask'] = F.resize(kwargs['mask'], size=self.size)
# step 2: random crop
if random.random() < self.crop_p:
if 'mask' in kwargs:
img, kwargs = self.paired_random_crop(img, **kwargs) # 51
else:
img = self.random_crop(img) # 512
else:
# long edge resize
img = F.resize(img, size=self.size - 1, max_size=self.size)
if 'mask' in kwargs:
kwargs['mask'] = F.resize(kwargs['mask'], size=self.size - 1, max_size=self.size)
# step 3: random aspect ratio
width, height = img.size
ratio = random.uniform(*self.scale_ratio)
img = F.resize(img, size=(int(height * ratio), int(width * ratio)))
if 'mask' in kwargs:
kwargs['mask'] = F.resize(kwargs['mask'], size=(int(height * ratio), int(width * ratio)), interpolation=0)
# step 4: random place
new_width, new_height = img.size
img = np.array(img)
if 'mask' in kwargs:
kwargs['mask'] = np.array(kwargs['mask']) / 255
start_y = random.randint(0, 512 - new_height)
start_x = random.randint(0, 512 - new_width)
res_img = np.zeros((self.size, self.size, 3), dtype=np.uint8)
res_mask = np.zeros((self.size, self.size))
res_img_mask = np.zeros((self.size, self.size))
res_img[start_y:start_y + new_height, start_x:start_x + new_width, :] = img
if 'mask' in kwargs:
res_mask[start_y:start_y + new_height, start_x:start_x + new_width] = kwargs['mask']
kwargs['mask'] = res_mask
res_img_mask[start_y:start_y + new_height, start_x:start_x + new_width] = 1
kwargs['img_mask'] = res_img_mask
img = Image.fromarray(res_img)
if 'mask' in kwargs:
kwargs['mask'] = cv2.resize(kwargs['mask'], (self.size // 8, self.size // 8), cv2.INTER_NEAREST)
kwargs['mask'] = torch.from_numpy(kwargs['mask'])
kwargs['img_mask'] = cv2.resize(kwargs['img_mask'], (self.size // 8, self.size // 8), cv2.INTER_NEAREST)
kwargs['img_mask'] = torch.from_numpy(kwargs['img_mask'])
return img, kwargs
@TRANSFORM_REGISTRY.register()
class ShuffleCaption(nn.Module):
def __init__(self, keep_token_num):
super().__init__()
self.keep_token_num = keep_token_num
def forward(self, img, **kwargs):
prompts = kwargs['prompts'].strip()
fixed_tokens = []
flex_tokens = [t.strip() for t in prompts.strip().split(',')]
if self.keep_token_num > 0:
fixed_tokens = flex_tokens[:self.keep_token_num]
flex_tokens = flex_tokens[self.keep_token_num:]
random.shuffle(flex_tokens)
prompts = ', '.join(fixed_tokens + flex_tokens)
kwargs['prompts'] = prompts
return img, kwargs
@TRANSFORM_REGISTRY.register()
class EnhanceText(nn.Module):
def __init__(self, enhance_type='object'):
super().__init__()
STYLE_TEMPLATE = [
'a painting in the style of {}',
'a rendering in the style of {}',
'a cropped painting in the style of {}',
'the painting in the style of {}',
'a clean painting in the style of {}',
'a dirty painting in the style of {}',
'a dark painting in the style of {}',
'a picture in the style of {}',
'a cool painting in the style of {}',
'a close-up painting in the style of {}',
'a bright painting in the style of {}',
'a cropped painting in the style of {}',
'a good painting in the style of {}',
'a close-up painting in the style of {}',
'a rendition in the style of {}',
'a nice painting in the style of {}',
'a small painting in the style of {}',
'a weird painting in the style of {}',
'a large painting in the style of {}',
]
OBJECT_TEMPLATE = [
'a photo of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'a photo of a clean {}',
'a photo of a dirty {}',
'a dark photo of the {}',
'a photo of my {}',
'a photo of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'a photo of the {}',
'a good photo of the {}',
'a photo of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'a photo of the clean {}',
'a rendition of a {}',
'a photo of a nice {}',
'a good photo of a {}',
'a photo of the nice {}',
'a photo of the small {}',
'a photo of the weird {}',
'a photo of the large {}',
'a photo of a cool {}',
'a photo of a small {}',
]
HUMAN_TEMPLATE = [
'a photo of a {}', 'a photo of one {}', 'a photo of the {}',
'the photo of a {}', 'a rendering of a {}',
'a rendition of the {}', 'a rendition of a {}',
'a cropped photo of the {}', 'a cropped photo of a {}',
'a bad photo of the {}', 'a bad photo of a {}',
'a photo of a weird {}', 'a weird photo of a {}',
'a bright photo of the {}', 'a good photo of the {}',
'a photo of a nice {}', 'a good photo of a {}',
'a photo of a cool {}', 'a bright photo of the {}'
]
if enhance_type == 'object':
self.templates = OBJECT_TEMPLATE
elif enhance_type == 'style':
self.templates = STYLE_TEMPLATE
elif enhance_type == 'human':
self.templates = HUMAN_TEMPLATE
else:
raise NotImplementedError
def forward(self, img, **kwargs):
concept_token = kwargs['prompts'].strip()
kwargs['prompts'] = random.choice(self.templates).format(concept_token)
return img, kwargs