ortha / mixofshow /pipelines /pipeline_regionally_t2iadapter.py
ujin-song's picture
upload mixofshow and orthogonal_mats folder
8e12b4e verified
raw
history blame
30.1 kB
import math
from typing import Any, Callable, Dict, List, Optional, Union
import PIL
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter import (StableDiffusionAdapterPipeline,
StableDiffusionAdapterPipelineOutput,
_preprocess_adapter_image)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from torch import einsum
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
if is_xformers_available():
import xformers
from mixofshow.pipelines.pipeline_edlora import bind_concept_prompt
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class RegionT2I_AttnProcessor:
def __init__(self, cross_attention_idx, attention_op=None):
self.attention_op = attention_op
self.cross_attention_idx = cross_attention_idx
def region_rewrite(self, attn, hidden_states, query, region_list, height, width):
def get_region_mask(region_list, feat_height, feat_width):
exclusive_mask = torch.zeros((feat_height, feat_width))
for region in region_list:
start_h, start_w, end_h, end_w = region[-1]
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
exclusive_mask[start_h:end_h, start_w:end_w] += 1
return exclusive_mask
dtype = query.dtype
seq_lens = query.shape[1]
downscale = math.sqrt(height * width / seq_lens)
# 0: context >=1: may be overlap
feat_height, feat_width = int(height // downscale), int(width // downscale)
region_mask = get_region_mask(region_list, feat_height, feat_width)
query = rearrange(query, 'b (h w) c -> b h w c', h=feat_height, w=feat_width)
hidden_states = rearrange(hidden_states, 'b (h w) c -> b h w c', h=feat_height, w=feat_width)
new_hidden_state = torch.zeros_like(hidden_states)
new_hidden_state[:, region_mask == 0, :] = hidden_states[:, region_mask == 0, :]
replace_ratio = 1.0
new_hidden_state[:, region_mask != 0, :] = (1 - replace_ratio) * hidden_states[:, region_mask != 0, :]
for region in region_list:
region_key, region_value, region_box = region
if attn.upcast_attention:
query = query.float()
region_key = region_key.float()
start_h, start_w, end_h, end_w = region_box
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
attention_region = einsum('b h w c, b n c -> b h w n', query[:, start_h:end_h, start_w:end_w, :], region_key) * attn.scale
if attn.upcast_softmax:
attention_region = attention_region.float()
attention_region = attention_region.softmax(dim=-1)
attention_region = attention_region.to(dtype)
hidden_state_region = einsum('b h w n, b n c -> b h w c', attention_region, region_value)
new_hidden_state[:, start_h:end_h, start_w:end_w, :] += \
replace_ratio * (hidden_state_region / (
region_mask.reshape(
1, *region_mask.shape, 1)[:, start_h:end_h, start_w:end_w, :]
).to(query.device))
new_hidden_state = rearrange(new_hidden_state, 'b h w c -> b (h w) c')
return new_hidden_state
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, **cross_attention_kwargs):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
is_cross = False
encoder_hidden_states = hidden_states
else:
is_cross = True
if len(encoder_hidden_states.shape) == 4: # multi-layer embedding
encoder_hidden_states = encoder_hidden_states[:, self.cross_attention_idx, ...]
else:
encoder_hidden_states = encoder_hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
if is_xformers_available() and not is_cross:
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
hidden_states = hidden_states.to(query.dtype)
else:
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
if is_cross:
region_list = []
for region in cross_attention_kwargs['region_list']:
if len(region[0].shape) == 4:
region_key = attn.to_k(region[0][:, self.cross_attention_idx, ...])
region_value = attn.to_v(region[0][:, self.cross_attention_idx, ...])
else:
region_key = attn.to_k(region[0])
region_value = attn.to_v(region[0])
region_key = attn.head_to_batch_dim(region_key)
region_value = attn.head_to_batch_dim(region_value)
region_list.append((region_key, region_value, region[1]))
hidden_states = self.region_rewrite(
attn=attn,
hidden_states=hidden_states,
query=query,
region_list=region_list,
height=cross_attention_kwargs['height'],
width=cross_attention_kwargs['width'])
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
def revise_regionally_t2iadapter_attention_forward(unet):
def change_forward(unet, count):
for name, layer in unet.named_children():
if layer.__class__.__name__ == 'Attention':
layer.set_processor(RegionT2I_AttnProcessor(count))
if 'attn2' in name:
count += 1
else:
count = change_forward(layer, count)
return count
# use this to ensure the order
cross_attention_idx = change_forward(unet.down_blocks, 0)
cross_attention_idx = change_forward(unet.mid_block, cross_attention_idx)
cross_attention_idx = change_forward(unet.up_blocks, cross_attention_idx)
print(f'Number of attention layer registered {cross_attention_idx}')
class RegionallyT2IAdapterPipeline(StableDiffusionAdapterPipeline):
_optional_components = ['safety_checker', 'feature_extractor']
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = False,
):
if safety_checker is None and requires_safety_checker:
logger.warning(
f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .'
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
'Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety'
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.new_concept_cfg = None
revise_regionally_t2iadapter_attention_forward(self.unet)
def set_new_concept_cfg(self, new_concept_cfg=None):
self.new_concept_cfg = new_concept_cfg
def _encode_region_prompt(self,
prompt,
new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
height=512,
width=512
):
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
assert batch_size == 1, 'only sample one prompt once in this version'
if prompt_embeds is None:
context_prompt, region_list = prompt[0][0], prompt[0][1]
context_prompt = bind_concept_prompt([context_prompt], new_concept_cfg)
context_prompt_input_ids = self.tokenizer(
context_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt',
).input_ids
prompt_embeds = self.text_encoder(context_prompt_input_ids.to(device), attention_mask=None)[0]
prompt_embeds = rearrange(prompt_embeds, '(b n) m c -> b n m c', b=batch_size)
prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, layer_num, seq_len, _ = prompt_embeds.shape
if negative_prompt is None:
negative_prompt = [''] * batch_size
negative_prompt_input_ids = self.tokenizer(
negative_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt').input_ids
negative_prompt_embeds = self.text_encoder(
negative_prompt_input_ids.to(device),
attention_mask=None,
)[0]
negative_prompt_embeds = (negative_prompt_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
for idx, region in enumerate(region_list):
region_prompt, region_neg_prompt, pos = region
region_prompt = bind_concept_prompt([region_prompt], new_concept_cfg)
region_prompt_input_ids = self.tokenizer(
region_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt').input_ids
region_embeds = self.text_encoder(region_prompt_input_ids.to(device), attention_mask=None)[0]
region_embeds = rearrange(region_embeds, '(b n) m c -> b n m c', b=batch_size)
region_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, layer_num, seq_len, _ = region_embeds.shape
if region_neg_prompt is None:
region_neg_prompt = [''] * batch_size
region_negprompt_input_ids = self.tokenizer(
region_neg_prompt,
padding='max_length',
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors='pt').input_ids
region_neg_embeds = self.text_encoder(region_negprompt_input_ids.to(device), attention_mask=None)[0]
region_neg_embeds = (region_neg_embeds).view(batch_size, 1, seq_len, -1).repeat(1, layer_num, 1, 1)
region_neg_embeds.to(dtype=self.text_encoder.dtype, device=device)
region_list[idx] = (torch.cat([region_neg_embeds, region_embeds]), pos)
return prompt_embeds, region_list
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
keypose_adapter_input: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
keypose_adaptor_weight=1.0,
region_keypose_adaptor_weight='',
sketch_adapter_input: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
sketch_adaptor_weight=1.0,
region_sketch_adaptor_weight='',
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = 'pil',
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
accepted as an image. The control image is automatically resized to fit the output image.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the
residual in the original unet. If multiple adapters are specified in init, you can set the
corresponding scale as a list.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
element is a list of `bool`s denoting whether the corresponding generated image likely represents
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
device = self._execution_device
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
if keypose_adapter_input is not None:
keypose_input = _preprocess_adapter_image(keypose_adapter_input, height, width).to(self.device)
keypose_input = keypose_input.to(self.keypose_adapter.dtype)
else:
keypose_input = None
if sketch_adapter_input is not None:
sketch_input = _preprocess_adapter_image(sketch_adapter_input, height, width).to(self.device)
sketch_input = sketch_input.to(self.sketch_adapter.dtype)
else:
sketch_input = None
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
assert self.new_concept_cfg is not None
prompt_embeds, region_list = self._encode_region_prompt(
prompt,
self.new_concept_cfg,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
height=height,
width=width
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
if keypose_input is not None:
keypose_adapter_state = self.keypose_adapter(keypose_input)
else:
keypose_adapter_state = None
if sketch_input is not None:
sketch_adapter_state = self.sketch_adapter(sketch_input)
else:
sketch_adapter_state = None
num_states = len(keypose_adapter_state) if keypose_adapter_state is not None else len(sketch_adapter_state)
adapter_state = []
for idx in range(num_states):
if keypose_adapter_state is not None:
feat_keypose = keypose_adapter_state[idx]
spatial_adaptor_weight = keypose_adaptor_weight * torch.ones(*feat_keypose.shape[2:]).to(
feat_keypose.dtype).to(feat_keypose.device)
if region_keypose_adaptor_weight != '':
region_list = region_keypose_adaptor_weight.split('|')
for region_weight in region_list:
region, weight = region_weight.split('-')
region = eval(region)
weight = eval(weight)
feat_height, feat_width = feat_keypose.shape[2:]
start_h, start_w, end_h, end_w = region
start_h, end_h = start_h / height, end_h / height
start_w, end_w = start_w / width, end_w / width
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
spatial_adaptor_weight[start_h:end_h, start_w:end_w] = weight
feat_keypose = spatial_adaptor_weight * feat_keypose
else:
feat_keypose = 0
if sketch_adapter_state is not None:
feat_sketch = sketch_adapter_state[idx]
# print(feat_keypose.shape) # torch.Size([1, 320, 64, 128])
spatial_adaptor_weight = sketch_adaptor_weight * torch.ones(*feat_sketch.shape[2:]).to(
feat_sketch.dtype).to(feat_sketch.device)
if region_sketch_adaptor_weight != '':
region_list = region_sketch_adaptor_weight.split('|')
for region_weight in region_list:
region, weight = region_weight.split('-')
region = eval(region)
weight = eval(weight)
feat_height, feat_width = feat_sketch.shape[2:]
start_h, start_w, end_h, end_w = region
start_h, end_h = start_h / height, end_h / height
start_w, end_w = start_w / width, end_w / width
start_h, start_w, end_h, end_w = math.ceil(start_h * feat_height), math.ceil(
start_w * feat_width), math.floor(end_h * feat_height), math.floor(end_w * feat_width)
spatial_adaptor_weight[start_h:end_h, start_w:end_w] = weight
feat_sketch = spatial_adaptor_weight * feat_sketch
else:
feat_sketch = 0
adapter_state.append(feat_keypose + feat_sketch)
if do_classifier_free_guidance:
for k, v in enumerate(adapter_state):
adapter_state[k] = torch.cat([v] * 2, dim=0)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={
'region_list': region_list,
'height': height,
'width': width,
},
down_block_additional_residuals=[state.clone() for state in adapter_state],
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == 'latent':
image = latents
has_nsfw_concept = None
elif output_type == 'pil':
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload last model to CPU
if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionAdapterPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)