upload experiments folder
Browse filessubdir: 'multi-concept'(empty) and 'single-concept' with 'elsa' and 'moana' folder
- experiments/.DS_Store +0 -0
- experiments/single-concept/.DS_Store +0 -0
- experiments/single-concept/elsa/.DS_Store +0 -0
- experiments/single-concept/elsa/0022_elsa_ortho.yml +96 -0
- experiments/single-concept/elsa/models/edlora_model-latest.pth +3 -0
- experiments/single-concept/elsa/train_0022_elsa_ortho_20240524_084955.log +193 -0
- experiments/single-concept/moana/.DS_Store +0 -0
- experiments/single-concept/moana/0023_moana_ortho.yml +96 -0
- experiments/single-concept/moana/models/edlora_model-latest.pth +3 -0
- experiments/single-concept/moana/train_0023_moana_ortho_20240524_091937.log +193 -0
experiments/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
experiments/single-concept/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
experiments/single-concept/elsa/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
experiments/single-concept/elsa/0022_elsa_ortho.yml
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GENERATE TIME: Fri May 24 08:49:55 2024
|
2 |
+
# CMD:
|
3 |
+
# train_edlora.py -opt ortho_datasets/train_configs/ortho/0022_elsa_ortho.yml
|
4 |
+
|
5 |
+
name: 0022_elsa_ortho
|
6 |
+
manual_seed: 1022
|
7 |
+
mixed_precision: fp16
|
8 |
+
gradient_accumulation_steps: 1
|
9 |
+
|
10 |
+
# dataset and data loader settings
|
11 |
+
datasets:
|
12 |
+
train:
|
13 |
+
name: LoraDataset
|
14 |
+
concept_list: ortho_datasets/data_configs/elsa.json
|
15 |
+
use_caption: true
|
16 |
+
use_mask: true
|
17 |
+
instance_transform:
|
18 |
+
- { type: HumanResizeCropFinalV3, size: 512, crop_p: 0.5 }
|
19 |
+
- { type: ToTensor }
|
20 |
+
- { type: Normalize, mean: [ 0.5 ], std: [ 0.5 ] }
|
21 |
+
- { type: ShuffleCaption, keep_token_num: 1 }
|
22 |
+
- { type: EnhanceText, enhance_type: human }
|
23 |
+
replace_mapping:
|
24 |
+
<TOK>: <elsa1> <elsa2>
|
25 |
+
batch_size_per_gpu: 2
|
26 |
+
dataset_enlarge_ratio: 500
|
27 |
+
|
28 |
+
val_vis:
|
29 |
+
name: PromptDataset
|
30 |
+
prompts: datasets/validation_prompts/single-concept/characters/test_girl.txt
|
31 |
+
num_samples_per_prompt: 8
|
32 |
+
latent_size: [ 4,64,64 ]
|
33 |
+
replace_mapping:
|
34 |
+
<TOK>: <elsa1> <elsa2>
|
35 |
+
batch_size_per_gpu: 4
|
36 |
+
|
37 |
+
models:
|
38 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
39 |
+
enable_edlora: true # true means ED-LoRA, false means vanilla LoRA
|
40 |
+
finetune_cfg:
|
41 |
+
text_embedding:
|
42 |
+
enable_tuning: true
|
43 |
+
lr: !!float 1e-3
|
44 |
+
text_encoder:
|
45 |
+
enable_tuning: true
|
46 |
+
lora_cfg:
|
47 |
+
rank: 5
|
48 |
+
alpha: 1.0
|
49 |
+
where: CLIPAttention
|
50 |
+
lr: !!float 1e-5
|
51 |
+
unet:
|
52 |
+
enable_tuning: true
|
53 |
+
lora_cfg:
|
54 |
+
rank: 5
|
55 |
+
alpha: 1.0
|
56 |
+
where: Attention
|
57 |
+
lr: !!float 1e-4
|
58 |
+
new_concept_token: <elsa1>+<elsa2>
|
59 |
+
initializer_token: <rand-0.013>+man
|
60 |
+
noise_offset: 0.01
|
61 |
+
attn_reg_weight: 0.01
|
62 |
+
reg_full_identity: false
|
63 |
+
use_mask_loss: true
|
64 |
+
gradient_checkpoint: false
|
65 |
+
enable_xformers: true
|
66 |
+
|
67 |
+
# path
|
68 |
+
path:
|
69 |
+
pretrain_network: ~
|
70 |
+
|
71 |
+
# training settings
|
72 |
+
train:
|
73 |
+
optim_g:
|
74 |
+
type: AdamW
|
75 |
+
lr: !!float 0.0 # no use since we define different component lr in model
|
76 |
+
weight_decay: 0.01
|
77 |
+
betas: [ 0.9, 0.999 ] # align with taming
|
78 |
+
|
79 |
+
# dropkv
|
80 |
+
unet_kv_drop_rate: 0
|
81 |
+
scheduler: linear
|
82 |
+
emb_norm_threshold: !!float 5.5e-1
|
83 |
+
|
84 |
+
# validation settings
|
85 |
+
val:
|
86 |
+
val_during_save: true
|
87 |
+
compose_visualize: true
|
88 |
+
alpha_list: [0, 0.7, 1.0] # 0 means only visualize embedding (without lora weight)
|
89 |
+
sample:
|
90 |
+
num_inference_steps: 50
|
91 |
+
guidance_scale: 7.5
|
92 |
+
|
93 |
+
# logging settings
|
94 |
+
logger:
|
95 |
+
print_freq: 10
|
96 |
+
save_checkpoint_freq: !!float 10000
|
experiments/single-concept/elsa/models/edlora_model-latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8881600a7977e5baf6b5cbabf4dbe83b5f2d2767b26d780ada566bbc4259092
|
3 |
+
size 35173046
|
experiments/single-concept/elsa/train_0022_elsa_ortho_20240524_084955.log
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-24 08:49:55,814 INFO: Distributed environment: MULTI_GPU Backend: nccl
|
2 |
+
Num processes: 2
|
3 |
+
Process index: 0
|
4 |
+
Local process index: 0
|
5 |
+
Device: cuda:0
|
6 |
+
|
7 |
+
Mixed precision type: fp16
|
8 |
+
|
9 |
+
2024-05-24 08:49:55,814 INFO:
|
10 |
+
name: 0022_elsa_ortho
|
11 |
+
manual_seed: 1022
|
12 |
+
mixed_precision: fp16
|
13 |
+
gradient_accumulation_steps: 1
|
14 |
+
datasets:[
|
15 |
+
train:[
|
16 |
+
name: LoraDataset
|
17 |
+
concept_list: ortho_datasets/data_configs/elsa.json
|
18 |
+
use_caption: True
|
19 |
+
use_mask: True
|
20 |
+
instance_transform: [{'type': 'HumanResizeCropFinalV3', 'size': 512, 'crop_p': 0.5}, {'type': 'ToTensor'}, {'type': 'Normalize', 'mean': [0.5], 'std': [0.5]}, {'type': 'ShuffleCaption', 'keep_token_num': 1}, {'type': 'EnhanceText', 'enhance_type': 'human'}]
|
21 |
+
replace_mapping:[
|
22 |
+
<TOK>: <elsa1> <elsa2>
|
23 |
+
]
|
24 |
+
batch_size_per_gpu: 2
|
25 |
+
dataset_enlarge_ratio: 500
|
26 |
+
]
|
27 |
+
val_vis:[
|
28 |
+
name: PromptDataset
|
29 |
+
prompts: datasets/validation_prompts/single-concept/characters/test_girl.txt
|
30 |
+
num_samples_per_prompt: 8
|
31 |
+
latent_size: [4, 64, 64]
|
32 |
+
replace_mapping:[
|
33 |
+
<TOK>: <elsa1> <elsa2>
|
34 |
+
]
|
35 |
+
batch_size_per_gpu: 4
|
36 |
+
]
|
37 |
+
]
|
38 |
+
models:[
|
39 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
40 |
+
enable_edlora: True
|
41 |
+
finetune_cfg:[
|
42 |
+
text_embedding:[
|
43 |
+
enable_tuning: True
|
44 |
+
lr: 0.001
|
45 |
+
]
|
46 |
+
text_encoder:[
|
47 |
+
enable_tuning: True
|
48 |
+
lora_cfg:[
|
49 |
+
rank: 5
|
50 |
+
alpha: 1.0
|
51 |
+
where: CLIPAttention
|
52 |
+
]
|
53 |
+
lr: 1e-05
|
54 |
+
]
|
55 |
+
unet:[
|
56 |
+
enable_tuning: True
|
57 |
+
lora_cfg:[
|
58 |
+
rank: 5
|
59 |
+
alpha: 1.0
|
60 |
+
where: Attention
|
61 |
+
]
|
62 |
+
lr: 0.0001
|
63 |
+
]
|
64 |
+
]
|
65 |
+
new_concept_token: <elsa1>+<elsa2>
|
66 |
+
initializer_token: <rand-0.013>+man
|
67 |
+
noise_offset: 0.01
|
68 |
+
attn_reg_weight: 0.01
|
69 |
+
reg_full_identity: False
|
70 |
+
use_mask_loss: True
|
71 |
+
gradient_checkpoint: False
|
72 |
+
enable_xformers: True
|
73 |
+
]
|
74 |
+
path:[
|
75 |
+
pretrain_network: None
|
76 |
+
experiments_root: /home/data_guest/orthogonal_adaptation/experiments/0022_elsa_ortho
|
77 |
+
models: /home/data_guest/orthogonal_adaptation/experiments/0022_elsa_ortho/models
|
78 |
+
log: /home/data_guest/orthogonal_adaptation/experiments/0022_elsa_ortho
|
79 |
+
visualization: /home/data_guest/orthogonal_adaptation/experiments/0022_elsa_ortho/visualization
|
80 |
+
]
|
81 |
+
train:[
|
82 |
+
optim_g:[
|
83 |
+
type: AdamW
|
84 |
+
lr: 0.0
|
85 |
+
weight_decay: 0.01
|
86 |
+
betas: [0.9, 0.999]
|
87 |
+
]
|
88 |
+
unet_kv_drop_rate: 0
|
89 |
+
scheduler: linear
|
90 |
+
emb_norm_threshold: 0.55
|
91 |
+
]
|
92 |
+
val:[
|
93 |
+
val_during_save: True
|
94 |
+
compose_visualize: True
|
95 |
+
alpha_list: [0, 0.7, 1.0]
|
96 |
+
sample:[
|
97 |
+
num_inference_steps: 50
|
98 |
+
guidance_scale: 7.5
|
99 |
+
]
|
100 |
+
]
|
101 |
+
logger:[
|
102 |
+
print_freq: 10
|
103 |
+
save_checkpoint_freq: 10000.0
|
104 |
+
]
|
105 |
+
is_train: True
|
106 |
+
|
107 |
+
2024-05-24 08:50:00,274 INFO: <elsa1> (49408-49423) is random initialized by: <rand-0.013>
|
108 |
+
2024-05-24 08:50:00,591 INFO: <elsa2> (49424-49439) is random initialized by existing token (man): 786
|
109 |
+
2024-05-24 08:50:00,596 INFO: optimizing embedding using lr: 0.001
|
110 |
+
2024-05-24 08:50:00,677 INFO: optimizing text_encoder (48 LoRAs), using lr: 1e-05
|
111 |
+
2024-05-24 08:50:00,954 INFO: optimizing unet (128 LoRAs), using lr: 0.0001
|
112 |
+
2024-05-24 08:50:02,404 INFO: ***** Running training *****
|
113 |
+
2024-05-24 08:50:02,404 INFO: Num examples = 3000
|
114 |
+
2024-05-24 08:50:02,404 INFO: Instantaneous batch size per device = 2
|
115 |
+
2024-05-24 08:50:02,404 INFO: Total train batch size (w. parallel, distributed & accumulation) = 4
|
116 |
+
2024-05-24 08:50:02,404 INFO: Total optimization steps = 750.0
|
117 |
+
2024-05-24 08:50:12,424 INFO: [0022_..][Iter: 10, lr:(9.867e-04,9.867e-06,9.867e-05,)] [eta: 0:11:13] loss: 1.2587e+00 Norm_mean: 3.5817e-01
|
118 |
+
2024-05-24 08:50:20,263 INFO: [0022_..][Iter: 20, lr:(9.733e-04,9.733e-06,9.733e-05,)] [eta: 0:10:19] loss: 8.7049e-01 Norm_mean: 3.7253e-01
|
119 |
+
2024-05-24 08:50:27,816 INFO: [0022_..][Iter: 30, lr:(9.600e-04,9.600e-06,9.600e-05,)] [eta: 0:09:49] loss: 1.8845e+00 Norm_mean: 3.8294e-01
|
120 |
+
2024-05-24 08:50:35,431 INFO: [0022_..][Iter: 40, lr:(9.467e-04,9.467e-06,9.467e-05,)] [eta: 0:09:31] loss: 9.8640e-02 Norm_mean: 3.9094e-01
|
121 |
+
2024-05-24 08:50:42,913 INFO: [0022_..][Iter: 50, lr:(9.333e-04,9.333e-06,9.333e-05,)] [eta: 0:09:15] loss: 2.4037e-01 Norm_mean: 3.9714e-01
|
122 |
+
2024-05-24 08:50:50,343 INFO: [0022_..][Iter: 60, lr:(9.200e-04,9.200e-06,9.200e-05,)] [eta: 0:09:01] loss: 4.7384e-01 Norm_mean: 4.0230e-01
|
123 |
+
2024-05-24 08:50:58,098 INFO: [0022_..][Iter: 70, lr:(9.067e-04,9.067e-06,9.067e-05,)] [eta: 0:08:52] loss: 3.2908e-01 Norm_mean: 4.0708e-01
|
124 |
+
2024-05-24 08:51:05,707 INFO: [0022_..][Iter: 80, lr:(8.933e-04,8.933e-06,8.933e-05,)] [eta: 0:08:42] loss: 7.9968e-01 Norm_mean: 4.1264e-01
|
125 |
+
2024-05-24 08:51:13,056 INFO: [0022_..][Iter: 90, lr:(8.800e-04,8.800e-06,8.800e-05,)] [eta: 0:08:31] loss: 8.3418e-02 Norm_mean: 4.1884e-01
|
126 |
+
2024-05-24 08:51:20,886 INFO: [0022_..][Iter: 100, lr:(8.667e-04,8.667e-06,8.667e-05,)] [eta: 0:08:24] loss: 2.8333e-01 Norm_mean: 4.2442e-01
|
127 |
+
2024-05-24 08:51:28,637 INFO: [0022_..][Iter: 110, lr:(8.533e-04,8.533e-06,8.533e-05,)] [eta: 0:08:16] loss: 1.3183e+00 Norm_mean: 4.2854e-01
|
128 |
+
2024-05-24 08:51:35,538 INFO: [0022_..][Iter: 120, lr:(8.400e-04,8.400e-06,8.400e-05,)] [eta: 0:08:04] loss: 4.3494e-01 Norm_mean: 4.3216e-01
|
129 |
+
2024-05-24 08:51:43,352 INFO: [0022_..][Iter: 130, lr:(8.267e-04,8.267e-06,8.267e-05,)] [eta: 0:07:56] loss: 5.4238e-01 Norm_mean: 4.3511e-01
|
130 |
+
2024-05-24 08:51:51,530 INFO: [0022_..][Iter: 140, lr:(8.133e-04,8.133e-06,8.133e-05,)] [eta: 0:07:51] loss: 4.1099e-01 Norm_mean: 4.3870e-01
|
131 |
+
2024-05-24 08:51:59,472 INFO: [0022_..][Iter: 150, lr:(8.000e-04,8.000e-06,8.000e-05,)] [eta: 0:07:44] loss: 1.0146e+00 Norm_mean: 4.4381e-01
|
132 |
+
2024-05-24 08:52:07,090 INFO: [0022_..][Iter: 160, lr:(7.867e-04,7.867e-06,7.867e-05,)] [eta: 0:07:36] loss: 2.4690e-01 Norm_mean: 4.4945e-01
|
133 |
+
2024-05-24 08:52:14,838 INFO: [0022_..][Iter: 170, lr:(7.733e-04,7.733e-06,7.733e-05,)] [eta: 0:07:28] loss: 2.7580e-01 Norm_mean: 4.5369e-01
|
134 |
+
2024-05-24 08:52:22,332 INFO: [0022_..][Iter: 180, lr:(7.600e-04,7.600e-06,7.600e-05,)] [eta: 0:07:19] loss: 1.9310e-01 Norm_mean: 4.5661e-01
|
135 |
+
2024-05-24 08:52:29,932 INFO: [0022_..][Iter: 190, lr:(7.467e-04,7.467e-06,7.467e-05,)] [eta: 0:07:11] loss: 1.1666e+00 Norm_mean: 4.6024e-01
|
136 |
+
2024-05-24 08:52:37,632 INFO: [0022_..][Iter: 200, lr:(7.333e-04,7.333e-06,7.333e-05,)] [eta: 0:07:03] loss: 5.9502e-02 Norm_mean: 4.6344e-01
|
137 |
+
2024-05-24 08:52:45,449 INFO: [0022_..][Iter: 210, lr:(7.200e-04,7.200e-06,7.200e-05,)] [eta: 0:06:56] loss: 3.9958e-01 Norm_mean: 4.6653e-01
|
138 |
+
2024-05-24 08:52:53,375 INFO: [0022_..][Iter: 220, lr:(7.067e-04,7.067e-06,7.067e-05,)] [eta: 0:06:49] loss: 5.6507e-01 Norm_mean: 4.6919e-01
|
139 |
+
2024-05-24 08:53:00,317 INFO: [0022_..][Iter: 230, lr:(6.933e-04,6.933e-06,6.933e-05,)] [eta: 0:06:39] loss: 7.1709e-01 Norm_mean: 4.7232e-01
|
140 |
+
2024-05-24 08:53:07,303 INFO: [0022_..][Iter: 240, lr:(6.800e-04,6.800e-06,6.800e-05,)] [eta: 0:06:30] loss: 5.2934e-01 Norm_mean: 4.7492e-01
|
141 |
+
2024-05-24 08:53:15,167 INFO: [0022_..][Iter: 250, lr:(6.667e-04,6.667e-06,6.667e-05,)] [eta: 0:06:23] loss: 2.4139e-01 Norm_mean: 4.7698e-01
|
142 |
+
2024-05-24 08:53:22,671 INFO: [0022_..][Iter: 260, lr:(6.533e-04,6.533e-06,6.533e-05,)] [eta: 0:06:15] loss: 9.6894e-01 Norm_mean: 4.7931e-01
|
143 |
+
2024-05-24 08:53:30,109 INFO: [0022_..][Iter: 270, lr:(6.400e-04,6.400e-06,6.400e-05,)] [eta: 0:06:07] loss: 1.0858e-01 Norm_mean: 4.8147e-01
|
144 |
+
2024-05-24 08:53:36,928 INFO: [0022_..][Iter: 280, lr:(6.267e-04,6.267e-06,6.267e-05,)] [eta: 0:05:58] loss: 9.4769e-02 Norm_mean: 4.8353e-01
|
145 |
+
2024-05-24 08:53:44,626 INFO: [0022_..][Iter: 290, lr:(6.133e-04,6.133e-06,6.133e-05,)] [eta: 0:05:50] loss: 7.1380e-01 Norm_mean: 4.8565e-01
|
146 |
+
2024-05-24 08:53:51,587 INFO: [0022_..][Iter: 300, lr:(6.000e-04,6.000e-06,6.000e-05,)] [eta: 0:05:41] loss: 7.5040e-01 Norm_mean: 4.8758e-01
|
147 |
+
2024-05-24 08:53:58,569 INFO: [0022_..][Iter: 310, lr:(5.867e-04,5.867e-06,5.867e-05,)] [eta: 0:05:33] loss: 3.6233e-01 Norm_mean: 4.8935e-01
|
148 |
+
2024-05-24 08:54:06,352 INFO: [0022_..][Iter: 320, lr:(5.733e-04,5.733e-06,5.733e-05,)] [eta: 0:05:26] loss: 4.8190e-01 Norm_mean: 4.9100e-01
|
149 |
+
2024-05-24 08:54:13,366 INFO: [0022_..][Iter: 330, lr:(5.600e-04,5.600e-06,5.600e-05,)] [eta: 0:05:17] loss: 6.9878e-02 Norm_mean: 4.9276e-01
|
150 |
+
2024-05-24 08:54:20,574 INFO: [0022_..][Iter: 340, lr:(5.467e-04,5.467e-06,5.467e-05,)] [eta: 0:05:09] loss: 6.4842e-01 Norm_mean: 4.9464e-01
|
151 |
+
2024-05-24 08:54:27,821 INFO: [0022_..][Iter: 350, lr:(5.333e-04,5.333e-06,5.333e-05,)] [eta: 0:05:01] loss: 6.4891e-01 Norm_mean: 4.9647e-01
|
152 |
+
2024-05-24 08:54:34,138 INFO: [0022_..][Iter: 360, lr:(5.200e-04,5.200e-06,5.200e-05,)] [eta: 0:04:52] loss: 2.6867e-01 Norm_mean: 4.9825e-01
|
153 |
+
2024-05-24 08:54:42,063 INFO: [0022_..][Iter: 370, lr:(5.067e-04,5.067e-06,5.067e-05,)] [eta: 0:04:45] loss: 8.6926e-01 Norm_mean: 4.9982e-01
|
154 |
+
2024-05-24 08:54:49,908 INFO: [0022_..][Iter: 380, lr:(4.933e-04,4.933e-06,4.933e-05,)] [eta: 0:04:38] loss: 4.8145e-01 Norm_mean: 5.0119e-01
|
155 |
+
2024-05-24 08:54:57,804 INFO: [0022_..][Iter: 390, lr:(4.800e-04,4.800e-06,4.800e-05,)] [eta: 0:04:31] loss: 9.5628e-01 Norm_mean: 5.0271e-01
|
156 |
+
2024-05-24 08:55:05,054 INFO: [0022_..][Iter: 400, lr:(4.667e-04,4.667e-06,4.667e-05,)] [eta: 0:04:23] loss: 6.7564e-02 Norm_mean: 5.0433e-01
|
157 |
+
2024-05-24 08:55:12,055 INFO: [0022_..][Iter: 410, lr:(4.533e-04,4.533e-06,4.533e-05,)] [eta: 0:04:15] loss: 7.3947e-01 Norm_mean: 5.0588e-01
|
158 |
+
2024-05-24 08:55:19,188 INFO: [0022_..][Iter: 420, lr:(4.400e-04,4.400e-06,4.400e-05,)] [eta: 0:04:07] loss: 5.3082e-01 Norm_mean: 5.0701e-01
|
159 |
+
2024-05-24 08:55:26,681 INFO: [0022_..][Iter: 430, lr:(4.267e-04,4.267e-06,4.267e-05,)] [eta: 0:04:00] loss: 3.8347e-01 Norm_mean: 5.0823e-01
|
160 |
+
2024-05-24 08:55:34,282 INFO: [0022_..][Iter: 440, lr:(4.133e-04,4.133e-06,4.133e-05,)] [eta: 0:03:52] loss: 2.2813e-02 Norm_mean: 5.0962e-01
|
161 |
+
2024-05-24 08:55:41,965 INFO: [0022_..][Iter: 450, lr:(4.000e-04,4.000e-06,4.000e-05,)] [eta: 0:03:45] loss: 1.1481e+00 Norm_mean: 5.1106e-01
|
162 |
+
2024-05-24 08:55:49,691 INFO: [0022_..][Iter: 460, lr:(3.867e-04,3.867e-06,3.867e-05,)] [eta: 0:03:37] loss: 8.9931e-02 Norm_mean: 5.1241e-01
|
163 |
+
2024-05-24 08:55:57,556 INFO: [0022_..][Iter: 470, lr:(3.733e-04,3.733e-06,3.733e-05,)] [eta: 0:03:30] loss: 2.2061e-01 Norm_mean: 5.1351e-01
|
164 |
+
2024-05-24 08:56:05,384 INFO: [0022_..][Iter: 480, lr:(3.600e-04,3.600e-06,3.600e-05,)] [eta: 0:03:22] loss: 1.0475e+00 Norm_mean: 5.1457e-01
|
165 |
+
2024-05-24 08:56:12,447 INFO: [0022_..][Iter: 490, lr:(3.467e-04,3.467e-06,3.467e-05,)] [eta: 0:03:15] loss: 6.0158e-01 Norm_mean: 5.1546e-01
|
166 |
+
2024-05-24 08:56:19,867 INFO: [0022_..][Iter: 500, lr:(3.333e-04,3.333e-06,3.333e-05,)] [eta: 0:03:07] loss: 1.8953e-01 Norm_mean: 5.1649e-01
|
167 |
+
2024-05-24 08:56:27,398 INFO: [0022_..][Iter: 510, lr:(3.200e-04,3.200e-06,3.200e-05,)] [eta: 0:03:00] loss: 8.9298e-01 Norm_mean: 5.1761e-01
|
168 |
+
2024-05-24 08:56:35,097 INFO: [0022_..][Iter: 520, lr:(3.067e-04,3.067e-06,3.067e-05,)] [eta: 0:02:52] loss: 8.7824e-01 Norm_mean: 5.1848e-01
|
169 |
+
2024-05-24 08:56:42,783 INFO: [0022_..][Iter: 530, lr:(2.933e-04,2.933e-06,2.933e-05,)] [eta: 0:02:45] loss: 4.0614e-01 Norm_mean: 5.1931e-01
|
170 |
+
2024-05-24 08:56:50,708 INFO: [0022_..][Iter: 540, lr:(2.800e-04,2.800e-06,2.800e-05,)] [eta: 0:02:37] loss: 1.1193e+00 Norm_mean: 5.2018e-01
|
171 |
+
2024-05-24 08:56:58,195 INFO: [0022_..][Iter: 550, lr:(2.667e-04,2.667e-06,2.667e-05,)] [eta: 0:02:30] loss: 4.4657e-01 Norm_mean: 5.2078e-01
|
172 |
+
2024-05-24 08:57:05,716 INFO: [0022_..][Iter: 560, lr:(2.533e-04,2.533e-06,2.533e-05,)] [eta: 0:02:22] loss: 1.7082e+00 Norm_mean: 5.2121e-01
|
173 |
+
2024-05-24 08:57:13,378 INFO: [0022_..][Iter: 570, lr:(2.400e-04,2.400e-06,2.400e-05,)] [eta: 0:02:15] loss: 5.3018e-01 Norm_mean: 5.2166e-01
|
174 |
+
2024-05-24 08:57:21,360 INFO: [0022_..][Iter: 580, lr:(2.267e-04,2.267e-06,2.267e-05,)] [eta: 0:02:07] loss: 1.8932e+00 Norm_mean: 5.2210e-01
|
175 |
+
2024-05-24 08:57:28,783 INFO: [0022_..][Iter: 590, lr:(2.133e-04,2.133e-06,2.133e-05,)] [eta: 0:02:00] loss: 3.8593e-01 Norm_mean: 5.2250e-01
|
176 |
+
2024-05-24 08:57:36,530 INFO: [0022_..][Iter: 600, lr:(2.000e-04,2.000e-06,2.000e-05,)] [eta: 0:01:52] loss: 1.0122e+00 Norm_mean: 5.2296e-01
|
177 |
+
2024-05-24 08:57:43,785 INFO: [0022_..][Iter: 610, lr:(1.867e-04,1.867e-06,1.867e-05,)] [eta: 0:01:44] loss: 6.0211e-01 Norm_mean: 5.2335e-01
|
178 |
+
2024-05-24 08:57:51,030 INFO: [0022_..][Iter: 620, lr:(1.733e-04,1.733e-06,1.733e-05,)] [eta: 0:01:37] loss: 4.2980e-02 Norm_mean: 5.2367e-01
|
179 |
+
2024-05-24 08:57:57,850 INFO: [0022_..][Iter: 630, lr:(1.600e-04,1.600e-06,1.600e-05,)] [eta: 0:01:29] loss: 9.1195e-01 Norm_mean: 5.2391e-01
|
180 |
+
2024-05-24 08:58:05,690 INFO: [0022_..][Iter: 640, lr:(1.467e-04,1.467e-06,1.467e-05,)] [eta: 0:01:22] loss: 1.2563e-01 Norm_mean: 5.2410e-01
|
181 |
+
2024-05-24 08:58:12,981 INFO: [0022_..][Iter: 650, lr:(1.333e-04,1.333e-06,1.333e-05,)] [eta: 0:01:14] loss: 3.1517e-01 Norm_mean: 5.2424e-01
|
182 |
+
2024-05-24 08:58:19,360 INFO: [0022_..][Iter: 660, lr:(1.200e-04,1.200e-06,1.200e-05,)] [eta: 0:01:06] loss: 1.3256e+00 Norm_mean: 5.2438e-01
|
183 |
+
2024-05-24 08:58:27,015 INFO: [0022_..][Iter: 670, lr:(1.067e-04,1.067e-06,1.067e-05,)] [eta: 0:00:59] loss: 3.6326e-01 Norm_mean: 5.2453e-01
|
184 |
+
2024-05-24 08:58:34,256 INFO: [0022_..][Iter: 680, lr:(9.333e-05,9.333e-07,9.333e-06,)] [eta: 0:00:51] loss: 8.1322e-02 Norm_mean: 5.2466e-01
|
185 |
+
2024-05-24 08:58:41,265 INFO: [0022_..][Iter: 690, lr:(8.000e-05,8.000e-07,8.000e-06,)] [eta: 0:00:44] loss: 2.1985e+00 Norm_mean: 5.2479e-01
|
186 |
+
2024-05-24 08:58:47,287 INFO: [0022_..][Iter: 700, lr:(6.667e-05,6.667e-07,6.667e-06,)] [eta: 0:00:36] loss: 8.5051e-02 Norm_mean: 5.2488e-01
|
187 |
+
2024-05-24 08:58:54,372 INFO: [0022_..][Iter: 710, lr:(5.333e-05,5.333e-07,5.333e-06,)] [eta: 0:00:29] loss: 3.7023e-01 Norm_mean: 5.2493e-01
|
188 |
+
2024-05-24 08:59:02,323 INFO: [0022_..][Iter: 720, lr:(4.000e-05,4.000e-07,4.000e-06,)] [eta: 0:00:21] loss: 1.6481e-02 Norm_mean: 5.2497e-01
|
189 |
+
2024-05-24 08:59:10,000 INFO: [0022_..][Iter: 730, lr:(2.667e-05,2.667e-07,2.667e-06,)] [eta: 0:00:14] loss: 2.0079e-01 Norm_mean: 5.2499e-01
|
190 |
+
2024-05-24 08:59:17,197 INFO: [0022_..][Iter: 740, lr:(1.333e-05,1.333e-07,1.333e-06,)] [eta: 0:00:06] loss: 1.7066e-01 Norm_mean: 5.2500e-01
|
191 |
+
2024-05-24 08:59:24,228 INFO: [0022_..][Iter: 750, lr:(0.000e+00,0.000e+00,0.000e+00,)] [eta: 0:00:00] loss: 2.8842e-01 Norm_mean: 5.2500e-01
|
192 |
+
2024-05-24 08:59:24,267 INFO: Save state to /home/data_guest/orthogonal_adaptation/experiments/0022_elsa_ortho/models/edlora_model-latest.pth
|
193 |
+
2024-05-24 08:59:24,268 INFO: Start validation /home/data_guest/orthogonal_adaptation/experiments/0022_elsa_ortho/models/edlora_model-latest.pth:
|
experiments/single-concept/moana/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
experiments/single-concept/moana/0023_moana_ortho.yml
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GENERATE TIME: Fri May 24 09:19:37 2024
|
2 |
+
# CMD:
|
3 |
+
# train_edlora.py -opt ortho_datasets/train_configs/ortho/0023_moana_ortho.yml
|
4 |
+
|
5 |
+
name: 0023_moana_ortho
|
6 |
+
manual_seed: 1023
|
7 |
+
mixed_precision: fp16
|
8 |
+
gradient_accumulation_steps: 1
|
9 |
+
|
10 |
+
# dataset and data loader settings
|
11 |
+
datasets:
|
12 |
+
train:
|
13 |
+
name: LoraDataset
|
14 |
+
concept_list: ortho_datasets/data_configs/moana.json
|
15 |
+
use_caption: true
|
16 |
+
use_mask: true
|
17 |
+
instance_transform:
|
18 |
+
- { type: HumanResizeCropFinalV3, size: 512, crop_p: 0.5 }
|
19 |
+
- { type: ToTensor }
|
20 |
+
- { type: Normalize, mean: [ 0.5 ], std: [ 0.5 ] }
|
21 |
+
- { type: ShuffleCaption, keep_token_num: 1 }
|
22 |
+
- { type: EnhanceText, enhance_type: human }
|
23 |
+
replace_mapping:
|
24 |
+
<TOK>: <moana1> <moana2>
|
25 |
+
batch_size_per_gpu: 2
|
26 |
+
dataset_enlarge_ratio: 500
|
27 |
+
|
28 |
+
val_vis:
|
29 |
+
name: PromptDataset
|
30 |
+
prompts: datasets/validation_prompts/single-concept/characters/test_girl.txt
|
31 |
+
num_samples_per_prompt: 8
|
32 |
+
latent_size: [ 4,64,64 ]
|
33 |
+
replace_mapping:
|
34 |
+
<TOK>: <moana1> <moana2>
|
35 |
+
batch_size_per_gpu: 4
|
36 |
+
|
37 |
+
models:
|
38 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
39 |
+
enable_edlora: true # true means ED-LoRA, false means vanilla LoRA
|
40 |
+
finetune_cfg:
|
41 |
+
text_embedding:
|
42 |
+
enable_tuning: true
|
43 |
+
lr: !!float 1e-3
|
44 |
+
text_encoder:
|
45 |
+
enable_tuning: true
|
46 |
+
lora_cfg:
|
47 |
+
rank: 5
|
48 |
+
alpha: 1.0
|
49 |
+
where: CLIPAttention
|
50 |
+
lr: !!float 1e-5
|
51 |
+
unet:
|
52 |
+
enable_tuning: true
|
53 |
+
lora_cfg:
|
54 |
+
rank: 5
|
55 |
+
alpha: 1.0
|
56 |
+
where: Attention
|
57 |
+
lr: !!float 1e-4
|
58 |
+
new_concept_token: <moana1>+<moana2>
|
59 |
+
initializer_token: <rand-0.013>+man
|
60 |
+
noise_offset: 0.01
|
61 |
+
attn_reg_weight: 0.01
|
62 |
+
reg_full_identity: false
|
63 |
+
use_mask_loss: true
|
64 |
+
gradient_checkpoint: false
|
65 |
+
enable_xformers: true
|
66 |
+
|
67 |
+
# path
|
68 |
+
path:
|
69 |
+
pretrain_network: ~
|
70 |
+
|
71 |
+
# training settings
|
72 |
+
train:
|
73 |
+
optim_g:
|
74 |
+
type: AdamW
|
75 |
+
lr: !!float 0.0 # no use since we define different component lr in model
|
76 |
+
weight_decay: 0.01
|
77 |
+
betas: [ 0.9, 0.999 ] # align with taming
|
78 |
+
|
79 |
+
# dropkv
|
80 |
+
unet_kv_drop_rate: 0
|
81 |
+
scheduler: linear
|
82 |
+
emb_norm_threshold: !!float 5.5e-1
|
83 |
+
|
84 |
+
# validation settings
|
85 |
+
val:
|
86 |
+
val_during_save: true
|
87 |
+
compose_visualize: true
|
88 |
+
alpha_list: [0, 0.7, 1.0] # 0 means only visualize embedding (without lora weight)
|
89 |
+
sample:
|
90 |
+
num_inference_steps: 50
|
91 |
+
guidance_scale: 7.5
|
92 |
+
|
93 |
+
# logging settings
|
94 |
+
logger:
|
95 |
+
print_freq: 10
|
96 |
+
save_checkpoint_freq: !!float 10000
|
experiments/single-concept/moana/models/edlora_model-latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c773dc4f259039eef528a6ede49287baea1dfe62856fe50cf6caaec737fdf84d
|
3 |
+
size 35173046
|
experiments/single-concept/moana/train_0023_moana_ortho_20240524_091937.log
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-24 09:19:37,081 INFO: Distributed environment: MULTI_GPU Backend: nccl
|
2 |
+
Num processes: 2
|
3 |
+
Process index: 0
|
4 |
+
Local process index: 0
|
5 |
+
Device: cuda:0
|
6 |
+
|
7 |
+
Mixed precision type: fp16
|
8 |
+
|
9 |
+
2024-05-24 09:19:37,081 INFO:
|
10 |
+
name: 0023_moana_ortho
|
11 |
+
manual_seed: 1023
|
12 |
+
mixed_precision: fp16
|
13 |
+
gradient_accumulation_steps: 1
|
14 |
+
datasets:[
|
15 |
+
train:[
|
16 |
+
name: LoraDataset
|
17 |
+
concept_list: ortho_datasets/data_configs/moana.json
|
18 |
+
use_caption: True
|
19 |
+
use_mask: True
|
20 |
+
instance_transform: [{'type': 'HumanResizeCropFinalV3', 'size': 512, 'crop_p': 0.5}, {'type': 'ToTensor'}, {'type': 'Normalize', 'mean': [0.5], 'std': [0.5]}, {'type': 'ShuffleCaption', 'keep_token_num': 1}, {'type': 'EnhanceText', 'enhance_type': 'human'}]
|
21 |
+
replace_mapping:[
|
22 |
+
<TOK>: <moana1> <moana2>
|
23 |
+
]
|
24 |
+
batch_size_per_gpu: 2
|
25 |
+
dataset_enlarge_ratio: 500
|
26 |
+
]
|
27 |
+
val_vis:[
|
28 |
+
name: PromptDataset
|
29 |
+
prompts: datasets/validation_prompts/single-concept/characters/test_girl.txt
|
30 |
+
num_samples_per_prompt: 8
|
31 |
+
latent_size: [4, 64, 64]
|
32 |
+
replace_mapping:[
|
33 |
+
<TOK>: <moana1> <moana2>
|
34 |
+
]
|
35 |
+
batch_size_per_gpu: 4
|
36 |
+
]
|
37 |
+
]
|
38 |
+
models:[
|
39 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
40 |
+
enable_edlora: True
|
41 |
+
finetune_cfg:[
|
42 |
+
text_embedding:[
|
43 |
+
enable_tuning: True
|
44 |
+
lr: 0.001
|
45 |
+
]
|
46 |
+
text_encoder:[
|
47 |
+
enable_tuning: True
|
48 |
+
lora_cfg:[
|
49 |
+
rank: 5
|
50 |
+
alpha: 1.0
|
51 |
+
where: CLIPAttention
|
52 |
+
]
|
53 |
+
lr: 1e-05
|
54 |
+
]
|
55 |
+
unet:[
|
56 |
+
enable_tuning: True
|
57 |
+
lora_cfg:[
|
58 |
+
rank: 5
|
59 |
+
alpha: 1.0
|
60 |
+
where: Attention
|
61 |
+
]
|
62 |
+
lr: 0.0001
|
63 |
+
]
|
64 |
+
]
|
65 |
+
new_concept_token: <moana1>+<moana2>
|
66 |
+
initializer_token: <rand-0.013>+man
|
67 |
+
noise_offset: 0.01
|
68 |
+
attn_reg_weight: 0.01
|
69 |
+
reg_full_identity: False
|
70 |
+
use_mask_loss: True
|
71 |
+
gradient_checkpoint: False
|
72 |
+
enable_xformers: True
|
73 |
+
]
|
74 |
+
path:[
|
75 |
+
pretrain_network: None
|
76 |
+
experiments_root: /home/data_guest/orthogonal_adaptation/experiments/0023_moana_ortho
|
77 |
+
models: /home/data_guest/orthogonal_adaptation/experiments/0023_moana_ortho/models
|
78 |
+
log: /home/data_guest/orthogonal_adaptation/experiments/0023_moana_ortho
|
79 |
+
visualization: /home/data_guest/orthogonal_adaptation/experiments/0023_moana_ortho/visualization
|
80 |
+
]
|
81 |
+
train:[
|
82 |
+
optim_g:[
|
83 |
+
type: AdamW
|
84 |
+
lr: 0.0
|
85 |
+
weight_decay: 0.01
|
86 |
+
betas: [0.9, 0.999]
|
87 |
+
]
|
88 |
+
unet_kv_drop_rate: 0
|
89 |
+
scheduler: linear
|
90 |
+
emb_norm_threshold: 0.55
|
91 |
+
]
|
92 |
+
val:[
|
93 |
+
val_during_save: True
|
94 |
+
compose_visualize: True
|
95 |
+
alpha_list: [0, 0.7, 1.0]
|
96 |
+
sample:[
|
97 |
+
num_inference_steps: 50
|
98 |
+
guidance_scale: 7.5
|
99 |
+
]
|
100 |
+
]
|
101 |
+
logger:[
|
102 |
+
print_freq: 10
|
103 |
+
save_checkpoint_freq: 10000.0
|
104 |
+
]
|
105 |
+
is_train: True
|
106 |
+
|
107 |
+
2024-05-24 09:19:41,541 INFO: <moana1> (49408-49423) is random initialized by: <rand-0.013>
|
108 |
+
2024-05-24 09:19:41,717 INFO: <moana2> (49424-49439) is random initialized by existing token (man): 786
|
109 |
+
2024-05-24 09:19:41,720 INFO: optimizing embedding using lr: 0.001
|
110 |
+
2024-05-24 09:19:41,768 INFO: optimizing text_encoder (48 LoRAs), using lr: 1e-05
|
111 |
+
2024-05-24 09:19:41,983 INFO: optimizing unet (128 LoRAs), using lr: 0.0001
|
112 |
+
2024-05-24 09:19:44,928 INFO: ***** Running training *****
|
113 |
+
2024-05-24 09:19:44,928 INFO: Num examples = 3000
|
114 |
+
2024-05-24 09:19:44,928 INFO: Instantaneous batch size per device = 2
|
115 |
+
2024-05-24 09:19:44,928 INFO: Total train batch size (w. parallel, distributed & accumulation) = 4
|
116 |
+
2024-05-24 09:19:44,928 INFO: Total optimization steps = 750.0
|
117 |
+
2024-05-24 09:20:23,702 INFO: [0023_..][Iter: 10, lr:(9.867e-04,9.867e-06,9.867e-05,)] [eta: 0:43:24] loss: 2.7444e+00 Norm_mean: 3.7058e-01
|
118 |
+
2024-05-24 09:20:30,728 INFO: [0023_..][Iter: 20, lr:(9.733e-04,9.733e-06,9.733e-05,)] [eta: 0:26:29] loss: 4.9992e-01 Norm_mean: 3.8656e-01
|
119 |
+
2024-05-24 09:20:37,744 INFO: [0023_..][Iter: 30, lr:(9.600e-04,9.600e-06,9.600e-05,)] [eta: 0:20:24] loss: 4.6753e-01 Norm_mean: 3.9790e-01
|
120 |
+
2024-05-24 09:20:44,680 INFO: [0023_..][Iter: 40, lr:(9.467e-04,9.467e-06,9.467e-05,)] [eta: 0:17:13] loss: 3.3917e-01 Norm_mean: 4.0640e-01
|
121 |
+
2024-05-24 09:20:51,688 INFO: [0023_..][Iter: 50, lr:(9.333e-04,9.333e-06,9.333e-05,)] [eta: 0:15:15] loss: 7.7060e-01 Norm_mean: 4.1344e-01
|
122 |
+
2024-05-24 09:20:57,899 INFO: [0023_..][Iter: 60, lr:(9.200e-04,9.200e-06,9.200e-05,)] [eta: 0:13:44] loss: 3.5283e-01 Norm_mean: 4.2051e-01
|
123 |
+
2024-05-24 09:21:04,239 INFO: [0023_..][Iter: 70, lr:(9.067e-04,9.067e-06,9.067e-05,)] [eta: 0:12:38] loss: 1.4238e-01 Norm_mean: 4.2707e-01
|
124 |
+
2024-05-24 09:21:10,581 INFO: [0023_..][Iter: 80, lr:(8.933e-04,8.933e-06,8.933e-05,)] [eta: 0:11:47] loss: 5.7928e-01 Norm_mean: 4.3243e-01
|
125 |
+
2024-05-24 09:21:16,894 INFO: [0023_..][Iter: 90, lr:(8.800e-04,8.800e-06,8.800e-05,)] [eta: 0:11:05] loss: 4.8595e-01 Norm_mean: 4.3749e-01
|
126 |
+
2024-05-24 09:21:23,243 INFO: [0023_..][Iter: 100, lr:(8.667e-04,8.667e-06,8.667e-05,)] [eta: 0:10:31] loss: 1.7987e-01 Norm_mean: 4.4195e-01
|
127 |
+
2024-05-24 09:21:29,656 INFO: [0023_..][Iter: 110, lr:(8.533e-04,8.533e-06,8.533e-05,)] [eta: 0:10:02] loss: 8.3704e-01 Norm_mean: 4.4614e-01
|
128 |
+
2024-05-24 09:21:36,571 INFO: [0023_..][Iter: 120, lr:(8.400e-04,8.400e-06,8.400e-05,)] [eta: 0:09:40] loss: 5.8279e-02 Norm_mean: 4.4991e-01
|
129 |
+
2024-05-24 09:21:43,459 INFO: [0023_..][Iter: 130, lr:(8.267e-04,8.267e-06,8.267e-05,)] [eta: 0:09:20] loss: 5.7320e-01 Norm_mean: 4.5361e-01
|
130 |
+
2024-05-24 09:21:50,420 INFO: [0023_..][Iter: 140, lr:(8.133e-04,8.133e-06,8.133e-05,)] [eta: 0:09:02] loss: 2.5813e-01 Norm_mean: 4.5746e-01
|
131 |
+
2024-05-24 09:21:57,410 INFO: [0023_..][Iter: 150, lr:(8.000e-04,8.000e-06,8.000e-05,)] [eta: 0:08:45] loss: 8.5538e-01 Norm_mean: 4.6133e-01
|
132 |
+
2024-05-24 09:22:04,341 INFO: [0023_..][Iter: 160, lr:(7.867e-04,7.867e-06,7.867e-05,)] [eta: 0:08:30] loss: 3.8647e-01 Norm_mean: 4.6461e-01
|
133 |
+
2024-05-24 09:22:11,262 INFO: [0023_..][Iter: 170, lr:(7.733e-04,7.733e-06,7.733e-05,)] [eta: 0:08:15] loss: 2.6119e+00 Norm_mean: 4.6779e-01
|
134 |
+
2024-05-24 09:22:16,832 INFO: [0023_..][Iter: 180, lr:(7.600e-04,7.600e-06,7.600e-05,)] [eta: 0:07:57] loss: 1.3671e+00 Norm_mean: 4.7065e-01
|
135 |
+
2024-05-24 09:22:23,258 INFO: [0023_..][Iter: 190, lr:(7.467e-04,7.467e-06,7.467e-05,)] [eta: 0:07:43] loss: 8.4631e-01 Norm_mean: 4.7365e-01
|
136 |
+
2024-05-24 09:22:29,803 INFO: [0023_..][Iter: 200, lr:(7.333e-04,7.333e-06,7.333e-05,)] [eta: 0:07:30] loss: 1.6186e+00 Norm_mean: 4.7753e-01
|
137 |
+
2024-05-24 09:22:36,804 INFO: [0023_..][Iter: 210, lr:(7.200e-04,7.200e-06,7.200e-05,)] [eta: 0:07:19] loss: 1.7380e-01 Norm_mean: 4.8150e-01
|
138 |
+
2024-05-24 09:22:43,713 INFO: [0023_..][Iter: 220, lr:(7.067e-04,7.067e-06,7.067e-05,)] [eta: 0:07:07] loss: 1.1360e+00 Norm_mean: 4.8552e-01
|
139 |
+
2024-05-24 09:22:49,170 INFO: [0023_..][Iter: 230, lr:(6.933e-04,6.933e-06,6.933e-05,)] [eta: 0:06:53] loss: 3.3080e-01 Norm_mean: 4.8927e-01
|
140 |
+
2024-05-24 09:22:55,042 INFO: [0023_..][Iter: 240, lr:(6.800e-04,6.800e-06,6.800e-05,)] [eta: 0:06:41] loss: 4.9993e-01 Norm_mean: 4.9236e-01
|
141 |
+
2024-05-24 09:23:02,053 INFO: [0023_..][Iter: 250, lr:(6.667e-04,6.667e-06,6.667e-05,)] [eta: 0:06:31] loss: 6.0387e-01 Norm_mean: 4.9509e-01
|
142 |
+
2024-05-24 09:23:08,981 INFO: [0023_..][Iter: 260, lr:(6.533e-04,6.533e-06,6.533e-05,)] [eta: 0:06:22] loss: 5.1055e-01 Norm_mean: 4.9863e-01
|
143 |
+
2024-05-24 09:23:15,374 INFO: [0023_..][Iter: 270, lr:(6.400e-04,6.400e-06,6.400e-05,)] [eta: 0:06:11] loss: 1.0547e-01 Norm_mean: 5.0310e-01
|
144 |
+
2024-05-24 09:23:21,849 INFO: [0023_..][Iter: 280, lr:(6.267e-04,6.267e-06,6.267e-05,)] [eta: 0:06:02] loss: 4.0255e-02 Norm_mean: 5.0702e-01
|
145 |
+
2024-05-24 09:23:28,306 INFO: [0023_..][Iter: 290, lr:(6.133e-04,6.133e-06,6.133e-05,)] [eta: 0:05:52] loss: 1.0906e-01 Norm_mean: 5.1034e-01
|
146 |
+
2024-05-24 09:23:35,170 INFO: [0023_..][Iter: 300, lr:(6.000e-04,6.000e-06,6.000e-05,)] [eta: 0:05:43] loss: 1.4252e+00 Norm_mean: 5.1348e-01
|
147 |
+
2024-05-24 09:23:41,924 INFO: [0023_..][Iter: 310, lr:(5.867e-04,5.867e-06,5.867e-05,)] [eta: 0:05:34] loss: 7.0278e-02 Norm_mean: 5.1641e-01
|
148 |
+
2024-05-24 09:23:48,274 INFO: [0023_..][Iter: 320, lr:(5.733e-04,5.733e-06,5.733e-05,)] [eta: 0:05:25] loss: 3.8147e-01 Norm_mean: 5.1858e-01
|
149 |
+
2024-05-24 09:23:54,702 INFO: [0023_..][Iter: 330, lr:(5.600e-04,5.600e-06,5.600e-05,)] [eta: 0:05:16] loss: 1.7608e-01 Norm_mean: 5.2044e-01
|
150 |
+
2024-05-24 09:24:01,424 INFO: [0023_..][Iter: 340, lr:(5.467e-04,5.467e-06,5.467e-05,)] [eta: 0:05:07] loss: 1.1170e+00 Norm_mean: 5.2224e-01
|
151 |
+
2024-05-24 09:24:07,505 INFO: [0023_..][Iter: 350, lr:(5.333e-04,5.333e-06,5.333e-05,)] [eta: 0:04:58] loss: 7.1001e-01 Norm_mean: 5.2444e-01
|
152 |
+
2024-05-24 09:24:13,023 INFO: [0023_..][Iter: 360, lr:(5.200e-04,5.200e-06,5.200e-05,)] [eta: 0:04:48] loss: 1.5879e+00 Norm_mean: 5.2653e-01
|
153 |
+
2024-05-24 09:24:18,528 INFO: [0023_..][Iter: 370, lr:(5.067e-04,5.067e-06,5.067e-05,)] [eta: 0:04:39] loss: 2.5563e-01 Norm_mean: 5.2846e-01
|
154 |
+
2024-05-24 09:24:24,972 INFO: [0023_..][Iter: 380, lr:(4.933e-04,4.933e-06,4.933e-05,)] [eta: 0:04:31] loss: 9.0899e-01 Norm_mean: 5.3051e-01
|
155 |
+
2024-05-24 09:24:32,003 INFO: [0023_..][Iter: 390, lr:(4.800e-04,4.800e-06,4.800e-05,)] [eta: 0:04:23] loss: 1.2670e+00 Norm_mean: 5.3236e-01
|
156 |
+
2024-05-24 09:24:38,936 INFO: [0023_..][Iter: 400, lr:(4.667e-04,4.667e-06,4.667e-05,)] [eta: 0:04:15] loss: 1.6520e+00 Norm_mean: 5.3406e-01
|
157 |
+
2024-05-24 09:24:45,952 INFO: [0023_..][Iter: 410, lr:(4.533e-04,4.533e-06,4.533e-05,)] [eta: 0:04:08] loss: 3.7375e-01 Norm_mean: 5.3559e-01
|
158 |
+
2024-05-24 09:24:52,748 INFO: [0023_..][Iter: 420, lr:(4.400e-04,4.400e-06,4.400e-05,)] [eta: 0:04:00] loss: 1.1693e+00 Norm_mean: 5.3698e-01
|
159 |
+
2024-05-24 09:24:59,669 INFO: [0023_..][Iter: 430, lr:(4.267e-04,4.267e-06,4.267e-05,)] [eta: 0:03:52] loss: 1.1808e+00 Norm_mean: 5.3815e-01
|
160 |
+
2024-05-24 09:25:06,638 INFO: [0023_..][Iter: 440, lr:(4.133e-04,4.133e-06,4.133e-05,)] [eta: 0:03:45] loss: 1.0359e-01 Norm_mean: 5.3950e-01
|
161 |
+
2024-05-24 09:25:13,567 INFO: [0023_..][Iter: 450, lr:(4.000e-04,4.000e-06,4.000e-05,)] [eta: 0:03:37] loss: 8.0667e-02 Norm_mean: 5.4091e-01
|
162 |
+
2024-05-24 09:25:20,520 INFO: [0023_..][Iter: 460, lr:(3.867e-04,3.867e-06,3.867e-05,)] [eta: 0:03:30] loss: 9.5960e-01 Norm_mean: 5.4276e-01
|
163 |
+
2024-05-24 09:25:27,072 INFO: [0023_..][Iter: 470, lr:(3.733e-04,3.733e-06,3.733e-05,)] [eta: 0:03:22] loss: 6.8269e-02 Norm_mean: 5.4442e-01
|
164 |
+
2024-05-24 09:25:34,060 INFO: [0023_..][Iter: 480, lr:(3.600e-04,3.600e-06,3.600e-05,)] [eta: 0:03:15] loss: 2.2930e-01 Norm_mean: 5.4567e-01
|
165 |
+
2024-05-24 09:25:40,966 INFO: [0023_..][Iter: 490, lr:(3.467e-04,3.467e-06,3.467e-05,)] [eta: 0:03:07] loss: 2.2810e-01 Norm_mean: 5.4676e-01
|
166 |
+
2024-05-24 09:25:47,481 INFO: [0023_..][Iter: 500, lr:(3.333e-04,3.333e-06,3.333e-05,)] [eta: 0:03:00] loss: 4.7360e-01 Norm_mean: 5.4776e-01
|
167 |
+
2024-05-24 09:25:54,410 INFO: [0023_..][Iter: 510, lr:(3.200e-04,3.200e-06,3.200e-05,)] [eta: 0:02:52] loss: 8.2354e-01 Norm_mean: 5.4879e-01
|
168 |
+
2024-05-24 09:26:00,504 INFO: [0023_..][Iter: 520, lr:(3.067e-04,3.067e-06,3.067e-05,)] [eta: 0:02:45] loss: 1.7603e-01 Norm_mean: 5.4975e-01
|
169 |
+
2024-05-24 09:26:07,561 INFO: [0023_..][Iter: 530, lr:(2.933e-04,2.933e-06,2.933e-05,)] [eta: 0:02:37] loss: 2.8653e-01 Norm_mean: 5.5008e-01
|
170 |
+
2024-05-24 09:26:14,605 INFO: [0023_..][Iter: 540, lr:(2.800e-04,2.800e-06,2.800e-05,)] [eta: 0:02:30] loss: 2.7579e-01 Norm_mean: 5.5008e-01
|
171 |
+
2024-05-24 09:26:21,434 INFO: [0023_..][Iter: 550, lr:(2.667e-04,2.667e-06,2.667e-05,)] [eta: 0:02:23] loss: 9.1648e-02 Norm_mean: 5.5008e-01
|
172 |
+
2024-05-24 09:26:28,427 INFO: [0023_..][Iter: 560, lr:(2.533e-04,2.533e-06,2.533e-05,)] [eta: 0:02:15] loss: 3.2573e-01 Norm_mean: 5.5008e-01
|
173 |
+
2024-05-24 09:26:34,906 INFO: [0023_..][Iter: 570, lr:(2.400e-04,2.400e-06,2.400e-05,)] [eta: 0:02:08] loss: 2.1821e-01 Norm_mean: 5.5008e-01
|
174 |
+
2024-05-24 09:26:41,312 INFO: [0023_..][Iter: 580, lr:(2.267e-04,2.267e-06,2.267e-05,)] [eta: 0:02:01] loss: 1.2252e+00 Norm_mean: 5.5008e-01
|
175 |
+
2024-05-24 09:26:48,146 INFO: [0023_..][Iter: 590, lr:(2.133e-04,2.133e-06,2.133e-05,)] [eta: 0:01:53] loss: 9.0433e-01 Norm_mean: 5.5008e-01
|
176 |
+
2024-05-24 09:26:55,184 INFO: [0023_..][Iter: 600, lr:(2.000e-04,2.000e-06,2.000e-05,)] [eta: 0:01:46] loss: 9.4442e-02 Norm_mean: 5.5008e-01
|
177 |
+
2024-05-24 09:27:02,262 INFO: [0023_..][Iter: 610, lr:(1.867e-04,1.867e-06,1.867e-05,)] [eta: 0:01:39] loss: 2.2219e-01 Norm_mean: 5.5008e-01
|
178 |
+
2024-05-24 09:27:09,306 INFO: [0023_..][Iter: 620, lr:(1.733e-04,1.733e-06,1.733e-05,)] [eta: 0:01:32] loss: 8.3554e-01 Norm_mean: 5.5008e-01
|
179 |
+
2024-05-24 09:27:16,299 INFO: [0023_..][Iter: 630, lr:(1.600e-04,1.600e-06,1.600e-05,)] [eta: 0:01:25] loss: 5.3108e-01 Norm_mean: 5.5008e-01
|
180 |
+
2024-05-24 09:27:23,348 INFO: [0023_..][Iter: 640, lr:(1.467e-04,1.467e-06,1.467e-05,)] [eta: 0:01:17] loss: 1.7645e-01 Norm_mean: 5.5008e-01
|
181 |
+
2024-05-24 09:27:30,430 INFO: [0023_..][Iter: 650, lr:(1.333e-04,1.333e-06,1.333e-05,)] [eta: 0:01:10] loss: 3.1456e-01 Norm_mean: 5.5008e-01
|
182 |
+
2024-05-24 09:27:37,475 INFO: [0023_..][Iter: 660, lr:(1.200e-04,1.200e-06,1.200e-05,)] [eta: 0:01:03] loss: 1.1743e+00 Norm_mean: 5.5008e-01
|
183 |
+
2024-05-24 09:27:44,129 INFO: [0023_..][Iter: 670, lr:(1.067e-04,1.067e-06,1.067e-05,)] [eta: 0:00:56] loss: 6.5870e-01 Norm_mean: 5.5008e-01
|
184 |
+
2024-05-24 09:27:50,855 INFO: [0023_..][Iter: 680, lr:(9.333e-05,9.333e-07,9.333e-06,)] [eta: 0:00:49] loss: 5.7135e-01 Norm_mean: 5.5008e-01
|
185 |
+
2024-05-24 09:27:57,902 INFO: [0023_..][Iter: 690, lr:(8.000e-05,8.000e-07,8.000e-06,)] [eta: 0:00:42] loss: 2.4428e-01 Norm_mean: 5.5008e-01
|
186 |
+
2024-05-24 09:28:04,974 INFO: [0023_..][Iter: 700, lr:(6.667e-05,6.667e-07,6.667e-06,)] [eta: 0:00:34] loss: 6.4063e-01 Norm_mean: 5.5008e-01
|
187 |
+
2024-05-24 09:28:11,538 INFO: [0023_..][Iter: 710, lr:(5.333e-05,5.333e-07,5.333e-06,)] [eta: 0:00:27] loss: 3.8671e-01 Norm_mean: 5.5008e-01
|
188 |
+
2024-05-24 09:28:18,071 INFO: [0023_..][Iter: 720, lr:(4.000e-05,4.000e-07,4.000e-06,)] [eta: 0:00:20] loss: 4.6350e-01 Norm_mean: 5.5008e-01
|
189 |
+
2024-05-24 09:28:24,068 INFO: [0023_..][Iter: 730, lr:(2.667e-05,2.667e-07,2.667e-06,)] [eta: 0:00:13] loss: 1.2668e+00 Norm_mean: 5.5008e-01
|
190 |
+
2024-05-24 09:28:29,706 INFO: [0023_..][Iter: 740, lr:(1.333e-05,1.333e-07,1.333e-06,)] [eta: 0:00:06] loss: 8.1621e-01 Norm_mean: 5.5008e-01
|
191 |
+
2024-05-24 09:28:36,604 INFO: [0023_..][Iter: 750, lr:(0.000e+00,0.000e+00,0.000e+00,)] [eta: 0:00:00] loss: 5.5807e-01 Norm_mean: 5.5008e-01
|
192 |
+
2024-05-24 09:28:36,645 INFO: Save state to /home/data_guest/orthogonal_adaptation/experiments/0023_moana_ortho/models/edlora_model-latest.pth
|
193 |
+
2024-05-24 09:28:36,645 INFO: Start validation /home/data_guest/orthogonal_adaptation/experiments/0023_moana_ortho/models/edlora_model-latest.pth:
|