ujin-song commited on
Commit
661240e
1 Parent(s): 8905508

added single-concept: woody

Browse files
experiments/single-concept/woody/5468_woody_ortho.yml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GENERATE TIME: Wed Jun 12 02:41:39 2024
2
+ # CMD:
3
+ # train_edlora.py -opt single-concept/train_configs/5468_woody_ortho.yml
4
+
5
+ name: 5468_woody_ortho
6
+ manual_seed: 5468
7
+ mixed_precision: fp16
8
+ gradient_accumulation_steps: 1
9
+ datasets:
10
+ train:
11
+ name: LoraDataset
12
+ concept_list: single-concept/data_configs/woody.json
13
+ use_caption: true
14
+ use_mask: true
15
+ instance_transform:
16
+ - type: HumanResizeCropFinalV3
17
+ size: 512
18
+ crop_p: 0.5
19
+ - type: ToTensor
20
+ - type: Normalize
21
+ mean:
22
+ - 0.5
23
+ std:
24
+ - 0.5
25
+ - type: ShuffleCaption
26
+ keep_token_num: 1
27
+ - type: EnhanceText
28
+ enhance_type: human
29
+ replace_mapping:
30
+ <TOK>: <woody1> <woody2>
31
+ batch_size_per_gpu: 2
32
+ dataset_enlarge_ratio: 500
33
+ val_vis:
34
+ name: PromptDataset
35
+ prompts: single-concept/validation_prompts/characters/test_man.txt
36
+ num_samples_per_prompt: 8
37
+ latent_size:
38
+ - 4
39
+ - 64
40
+ - 64
41
+ replace_mapping:
42
+ <TOK>: <woody1> <woody2>
43
+ batch_size_per_gpu: 4
44
+ models:
45
+ pretrained_path: nitrosocke/mo-di-diffusion
46
+ enable_edlora: true
47
+ finetune_cfg:
48
+ text_embedding:
49
+ enable_tuning: true
50
+ lr: 0.001
51
+ text_encoder:
52
+ enable_tuning: true
53
+ lora_cfg:
54
+ rank: 5
55
+ alpha: 1.0
56
+ where: CLIPAttention
57
+ lr: 1.0e-05
58
+ unet:
59
+ enable_tuning: true
60
+ lora_cfg:
61
+ rank: 5
62
+ alpha: 1.0
63
+ where: Attention
64
+ lr: 0.0001
65
+ new_concept_token: <woody1>+<woody2>
66
+ initializer_token: <rand-0.013>+man
67
+ noise_offset: 0.01
68
+ attn_reg_weight: 0.01
69
+ reg_full_identity: false
70
+ use_mask_loss: true
71
+ gradient_checkpoint: false
72
+ enable_xformers: true
73
+ path:
74
+ pretrain_network: null
75
+ train:
76
+ optim_g:
77
+ type: AdamW
78
+ lr: 0.0
79
+ weight_decay: 0.01
80
+ betas:
81
+ - 0.9
82
+ - 0.999
83
+ unet_kv_drop_rate: 0
84
+ scheduler: linear
85
+ emb_norm_threshold: 0.55
86
+ val:
87
+ val_during_save: true
88
+ compose_visualize: true
89
+ alpha_list:
90
+ - 0
91
+ - 0.7
92
+ - 1.0
93
+ sample:
94
+ num_inference_steps: 50
95
+ guidance_scale: 7.5
96
+ logger:
97
+ print_freq: 10
98
+ save_checkpoint_freq: 10000.0
experiments/single-concept/woody/models/edlora_model-latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e6feadc85448a4f2e38f210cb063a6d04987fabd19cf005f8a093c7539abb45
3
+ size 35173046
experiments/single-concept/woody/train_5468_woody_ortho_20240612_024139.log ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2024-06-12 02:41:39,471 INFO: Distributed environment: MULTI_GPU Backend: nccl
2
+ Num processes: 2
3
+ Process index: 0
4
+ Local process index: 0
5
+ Device: cuda:0
6
+
7
+ Mixed precision type: fp16
8
+
9
+ 2024-06-12 02:41:39,471 INFO:
10
+ name: 5468_woody_ortho
11
+ manual_seed: 5468
12
+ mixed_precision: fp16
13
+ gradient_accumulation_steps: 1
14
+ datasets:[
15
+ train:[
16
+ name: LoraDataset
17
+ concept_list: single-concept/data_configs/woody.json
18
+ use_caption: True
19
+ use_mask: True
20
+ instance_transform: [{'type': 'HumanResizeCropFinalV3', 'size': 512, 'crop_p': 0.5}, {'type': 'ToTensor'}, {'type': 'Normalize', 'mean': [0.5], 'std': [0.5]}, {'type': 'ShuffleCaption', 'keep_token_num': 1}, {'type': 'EnhanceText', 'enhance_type': 'human'}]
21
+ replace_mapping:[
22
+ <TOK>: <woody1> <woody2>
23
+ ]
24
+ batch_size_per_gpu: 2
25
+ dataset_enlarge_ratio: 500
26
+ ]
27
+ val_vis:[
28
+ name: PromptDataset
29
+ prompts: single-concept/validation_prompts/characters/test_man.txt
30
+ num_samples_per_prompt: 8
31
+ latent_size: [4, 64, 64]
32
+ replace_mapping:[
33
+ <TOK>: <woody1> <woody2>
34
+ ]
35
+ batch_size_per_gpu: 4
36
+ ]
37
+ ]
38
+ models:[
39
+ pretrained_path: nitrosocke/mo-di-diffusion
40
+ enable_edlora: True
41
+ finetune_cfg:[
42
+ text_embedding:[
43
+ enable_tuning: True
44
+ lr: 0.001
45
+ ]
46
+ text_encoder:[
47
+ enable_tuning: True
48
+ lora_cfg:[
49
+ rank: 5
50
+ alpha: 1.0
51
+ where: CLIPAttention
52
+ ]
53
+ lr: 1e-05
54
+ ]
55
+ unet:[
56
+ enable_tuning: True
57
+ lora_cfg:[
58
+ rank: 5
59
+ alpha: 1.0
60
+ where: Attention
61
+ ]
62
+ lr: 0.0001
63
+ ]
64
+ ]
65
+ new_concept_token: <woody1>+<woody2>
66
+ initializer_token: <rand-0.013>+man
67
+ noise_offset: 0.01
68
+ attn_reg_weight: 0.01
69
+ reg_full_identity: False
70
+ use_mask_loss: True
71
+ gradient_checkpoint: False
72
+ enable_xformers: True
73
+ ]
74
+ path:[
75
+ pretrain_network: None
76
+ experiments_root: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho
77
+ models: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/models
78
+ log: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho
79
+ visualization: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/visualization
80
+ ]
81
+ train:[
82
+ optim_g:[
83
+ type: AdamW
84
+ lr: 0.0
85
+ weight_decay: 0.01
86
+ betas: [0.9, 0.999]
87
+ ]
88
+ unet_kv_drop_rate: 0
89
+ scheduler: linear
90
+ emb_norm_threshold: 0.55
91
+ ]
92
+ val:[
93
+ val_during_save: True
94
+ compose_visualize: True
95
+ alpha_list: [0, 0.7, 1.0]
96
+ sample:[
97
+ num_inference_steps: 50
98
+ guidance_scale: 7.5
99
+ ]
100
+ ]
101
+ logger:[
102
+ print_freq: 10
103
+ save_checkpoint_freq: 10000.0
104
+ ]
105
+ is_train: True
106
+
107
+ 2024-06-12 02:43:20,128 INFO: <woody1> (49408-49423) is random initialized by: <rand-0.013>
108
+ 2024-06-12 02:43:20,868 INFO: <woody2> (49424-49439) is random initialized by existing token (man): 786
109
+ 2024-06-12 02:43:20,873 INFO: optimizing embedding using lr: 0.001
110
+ 2024-06-12 02:43:21,420 INFO: optimizing text_encoder (48 LoRAs), using lr: 1e-05
111
+ 2024-06-12 02:43:22,674 INFO: optimizing unet (128 LoRAs), using lr: 0.0001
112
+ 2024-06-12 02:43:26,045 INFO: ***** Running training *****
113
+ 2024-06-12 02:43:26,045 INFO: Num examples = 3000
114
+ 2024-06-12 02:43:26,045 INFO: Instantaneous batch size per device = 2
115
+ 2024-06-12 02:43:26,046 INFO: Total train batch size (w. parallel, distributed & accumulation) = 4
116
+ 2024-06-12 02:43:26,046 INFO: Total optimization steps = 750.0
117
+ 2024-06-12 02:44:06,961 INFO: [5468_..][Iter: 10, lr:(9.867e-04,9.867e-06,9.867e-05,)] [eta: 0:45:48] loss: 5.7099e-01 Norm_mean: 3.6939e-01
118
+ 2024-06-12 02:44:18,766 INFO: [5468_..][Iter: 20, lr:(9.733e-04,9.733e-06,9.733e-05,)] [eta: 0:30:30] loss: 6.7207e-01 Norm_mean: 3.8671e-01
119
+ 2024-06-12 02:44:30,974 INFO: [5468_..][Iter: 30, lr:(9.600e-04,9.600e-06,9.600e-05,)] [eta: 0:25:05] loss: 1.1701e+00 Norm_mean: 3.9964e-01
120
+ 2024-06-12 02:44:42,911 INFO: [5468_..][Iter: 40, lr:(9.467e-04,9.467e-06,9.467e-05,)] [eta: 0:22:09] loss: 1.2839e+00 Norm_mean: 4.1098e-01
121
+ 2024-06-12 02:44:54,917 INFO: [5468_..][Iter: 50, lr:(9.333e-04,9.333e-06,9.333e-05,)] [eta: 0:20:18] loss: 6.2330e-01 Norm_mean: 4.2076e-01
122
+ 2024-06-12 02:45:07,042 INFO: [5468_..][Iter: 60, lr:(9.200e-04,9.200e-06,9.200e-05,)] [eta: 0:19:00] loss: 9.9929e-01 Norm_mean: 4.2928e-01
123
+ 2024-06-12 02:45:19,059 INFO: [5468_..][Iter: 70, lr:(9.067e-04,9.067e-06,9.067e-05,)] [eta: 0:18:00] loss: 2.5575e-01 Norm_mean: 4.3723e-01
124
+ 2024-06-12 02:45:31,197 INFO: [5468_..][Iter: 80, lr:(8.933e-04,8.933e-06,8.933e-05,)] [eta: 0:17:13] loss: 1.2155e+00 Norm_mean: 4.4369e-01
125
+ 2024-06-12 02:45:43,729 INFO: [5468_..][Iter: 90, lr:(8.800e-04,8.800e-06,8.800e-05,)] [eta: 0:16:37] loss: 2.6324e-01 Norm_mean: 4.4957e-01
126
+ 2024-06-12 02:45:56,110 INFO: [5468_..][Iter: 100, lr:(8.667e-04,8.667e-06,8.667e-05,)] [eta: 0:16:04] loss: 1.6536e+00 Norm_mean: 4.5521e-01
127
+ 2024-06-12 02:46:08,328 INFO: [5468_..][Iter: 110, lr:(8.533e-04,8.533e-06,8.533e-05,)] [eta: 0:15:34] loss: 5.7876e-01 Norm_mean: 4.6003e-01
128
+ 2024-06-12 02:46:20,526 INFO: [5468_..][Iter: 120, lr:(8.400e-04,8.400e-06,8.400e-05,)] [eta: 0:15:07] loss: 3.8680e-01 Norm_mean: 4.6427e-01
129
+ 2024-06-12 02:46:32,565 INFO: [5468_..][Iter: 130, lr:(8.267e-04,8.267e-06,8.267e-05,)] [eta: 0:14:41] loss: 9.8066e-02 Norm_mean: 4.6867e-01
130
+ 2024-06-12 02:46:44,843 INFO: [5468_..][Iter: 140, lr:(8.133e-04,8.133e-06,8.133e-05,)] [eta: 0:14:18] loss: 5.0228e-01 Norm_mean: 4.7362e-01
131
+ 2024-06-12 02:46:57,031 INFO: [5468_..][Iter: 150, lr:(8.000e-04,8.000e-06,8.000e-05,)] [eta: 0:13:56] loss: 4.5112e-01 Norm_mean: 4.7771e-01
132
+ 2024-06-12 02:47:09,303 INFO: [5468_..][Iter: 160, lr:(7.867e-04,7.867e-06,7.867e-05,)] [eta: 0:13:36] loss: 8.8030e-01 Norm_mean: 4.8141e-01
133
+ 2024-06-12 02:47:21,632 INFO: [5468_..][Iter: 170, lr:(7.733e-04,7.733e-06,7.733e-05,)] [eta: 0:13:17] loss: 1.0749e+00 Norm_mean: 4.8524e-01
134
+ 2024-06-12 02:47:33,899 INFO: [5468_..][Iter: 180, lr:(7.600e-04,7.600e-06,7.600e-05,)] [eta: 0:12:59] loss: 4.8346e-01 Norm_mean: 4.8971e-01
135
+ 2024-06-12 02:47:46,179 INFO: [5468_..][Iter: 190, lr:(7.467e-04,7.467e-06,7.467e-05,)] [eta: 0:12:41] loss: 3.2656e-01 Norm_mean: 4.9335e-01
136
+ 2024-06-12 02:47:58,373 INFO: [5468_..][Iter: 200, lr:(7.333e-04,7.333e-06,7.333e-05,)] [eta: 0:12:23] loss: 1.1152e+00 Norm_mean: 4.9630e-01
137
+ 2024-06-12 02:48:10,567 INFO: [5468_..][Iter: 210, lr:(7.200e-04,7.200e-06,7.200e-05,)] [eta: 0:12:06] loss: 2.1954e-01 Norm_mean: 4.9981e-01
138
+ 2024-06-12 02:48:22,717 INFO: [5468_..][Iter: 220, lr:(7.067e-04,7.067e-06,7.067e-05,)] [eta: 0:11:50] loss: 1.0311e+00 Norm_mean: 5.0368e-01
139
+ 2024-06-12 02:48:34,814 INFO: [5468_..][Iter: 230, lr:(6.933e-04,6.933e-06,6.933e-05,)] [eta: 0:11:33] loss: 3.1768e-01 Norm_mean: 5.0728e-01
140
+ 2024-06-12 02:48:46,979 INFO: [5468_..][Iter: 240, lr:(6.800e-04,6.800e-06,6.800e-05,)] [eta: 0:11:17] loss: 2.7627e+00 Norm_mean: 5.1148e-01
141
+ 2024-06-12 02:48:58,988 INFO: [5468_..][Iter: 250, lr:(6.667e-04,6.667e-06,6.667e-05,)] [eta: 0:11:01] loss: 9.6659e-01 Norm_mean: 5.1515e-01
142
+ 2024-06-12 02:49:11,312 INFO: [5468_..][Iter: 260, lr:(6.533e-04,6.533e-06,6.533e-05,)] [eta: 0:10:46] loss: 5.9158e-01 Norm_mean: 5.1849e-01
143
+ 2024-06-12 02:49:23,229 INFO: [5468_..][Iter: 270, lr:(6.400e-04,6.400e-06,6.400e-05,)] [eta: 0:10:31] loss: 8.9412e-01 Norm_mean: 5.2158e-01
144
+ 2024-06-12 02:49:35,194 INFO: [5468_..][Iter: 280, lr:(6.267e-04,6.267e-06,6.267e-05,)] [eta: 0:10:16] loss: 7.5468e-01 Norm_mean: 5.2417e-01
145
+ 2024-06-12 02:49:47,086 INFO: [5468_..][Iter: 290, lr:(6.133e-04,6.133e-06,6.133e-05,)] [eta: 0:10:01] loss: 3.6878e-01 Norm_mean: 5.2664e-01
146
+ 2024-06-12 02:49:59,200 INFO: [5468_..][Iter: 300, lr:(6.000e-04,6.000e-06,6.000e-05,)] [eta: 0:09:46] loss: 7.5434e-02 Norm_mean: 5.2912e-01
147
+ 2024-06-12 02:50:11,234 INFO: [5468_..][Iter: 310, lr:(5.867e-04,5.867e-06,5.867e-05,)] [eta: 0:09:31] loss: 7.0255e-02 Norm_mean: 5.3135e-01
148
+ 2024-06-12 02:50:23,281 INFO: [5468_..][Iter: 320, lr:(5.733e-04,5.733e-06,5.733e-05,)] [eta: 0:09:17] loss: 7.6986e-01 Norm_mean: 5.3378e-01
149
+ 2024-06-12 02:50:35,246 INFO: [5468_..][Iter: 330, lr:(5.600e-04,5.600e-06,5.600e-05,)] [eta: 0:09:03] loss: 7.8151e-01 Norm_mean: 5.3608e-01
150
+ 2024-06-12 02:50:47,352 INFO: [5468_..][Iter: 340, lr:(5.467e-04,5.467e-06,5.467e-05,)] [eta: 0:08:49] loss: 1.9506e-01 Norm_mean: 5.3830e-01
151
+ 2024-06-12 02:50:59,349 INFO: [5468_..][Iter: 350, lr:(5.333e-04,5.333e-06,5.333e-05,)] [eta: 0:08:35] loss: 2.5245e-01 Norm_mean: 5.4062e-01
152
+ 2024-06-12 02:51:11,361 INFO: [5468_..][Iter: 360, lr:(5.200e-04,5.200e-06,5.200e-05,)] [eta: 0:08:21] loss: 6.4811e-01 Norm_mean: 5.4256e-01
153
+ 2024-06-12 02:51:23,561 INFO: [5468_..][Iter: 370, lr:(5.067e-04,5.067e-06,5.067e-05,)] [eta: 0:08:07] loss: 1.5239e+00 Norm_mean: 5.4466e-01
154
+ 2024-06-12 02:51:35,924 INFO: [5468_..][Iter: 380, lr:(4.933e-04,4.933e-06,4.933e-05,)] [eta: 0:07:54] loss: 4.0211e-02 Norm_mean: 5.4676e-01
155
+ 2024-06-12 02:51:48,339 INFO: [5468_..][Iter: 390, lr:(4.800e-04,4.800e-06,4.800e-05,)] [eta: 0:07:41] loss: 9.7101e-01 Norm_mean: 5.4847e-01
156
+ 2024-06-12 02:52:00,363 INFO: [5468_..][Iter: 400, lr:(4.667e-04,4.667e-06,4.667e-05,)] [eta: 0:07:27] loss: 2.0671e-01 Norm_mean: 5.5004e-01
157
+ 2024-06-12 02:52:12,307 INFO: [5468_..][Iter: 410, lr:(4.533e-04,4.533e-06,4.533e-05,)] [eta: 0:07:14] loss: 1.5877e-01 Norm_mean: 5.5004e-01
158
+ 2024-06-12 02:52:24,574 INFO: [5468_..][Iter: 420, lr:(4.400e-04,4.400e-06,4.400e-05,)] [eta: 0:07:00] loss: 2.5391e-01 Norm_mean: 5.5004e-01
159
+ 2024-06-12 02:52:36,622 INFO: [5468_..][Iter: 430, lr:(4.267e-04,4.267e-06,4.267e-05,)] [eta: 0:06:47] loss: 1.1532e-01 Norm_mean: 5.5004e-01
160
+ 2024-06-12 02:52:48,741 INFO: [5468_..][Iter: 440, lr:(4.133e-04,4.133e-06,4.133e-05,)] [eta: 0:06:34] loss: 3.0851e-01 Norm_mean: 5.5004e-01
161
+ 2024-06-12 02:53:01,070 INFO: [5468_..][Iter: 450, lr:(4.000e-04,4.000e-06,4.000e-05,)] [eta: 0:06:21] loss: 7.8738e-01 Norm_mean: 5.5004e-01
162
+ 2024-06-12 02:53:13,317 INFO: [5468_..][Iter: 460, lr:(3.867e-04,3.867e-06,3.867e-05,)] [eta: 0:06:08] loss: 5.9795e-01 Norm_mean: 5.5004e-01
163
+ 2024-06-12 02:53:25,576 INFO: [5468_..][Iter: 470, lr:(3.733e-04,3.733e-06,3.733e-05,)] [eta: 0:05:55] loss: 4.9539e-01 Norm_mean: 5.5004e-01
164
+ 2024-06-12 02:53:37,715 INFO: [5468_..][Iter: 480, lr:(3.600e-04,3.600e-06,3.600e-05,)] [eta: 0:05:42] loss: 3.8771e-01 Norm_mean: 5.5004e-01
165
+ 2024-06-12 02:53:49,877 INFO: [5468_..][Iter: 490, lr:(3.467e-04,3.467e-06,3.467e-05,)] [eta: 0:05:29] loss: 1.5134e+00 Norm_mean: 5.5004e-01
166
+ 2024-06-12 02:54:02,035 INFO: [5468_..][Iter: 500, lr:(3.333e-04,3.333e-06,3.333e-05,)] [eta: 0:05:16] loss: 3.3040e-01 Norm_mean: 5.5004e-01
167
+ 2024-06-12 02:54:14,330 INFO: [5468_..][Iter: 510, lr:(3.200e-04,3.200e-06,3.200e-05,)] [eta: 0:05:03] loss: 1.4163e+00 Norm_mean: 5.5004e-01
168
+ 2024-06-12 02:54:26,506 INFO: [5468_..][Iter: 520, lr:(3.067e-04,3.067e-06,3.067e-05,)] [eta: 0:04:50] loss: 9.3483e-01 Norm_mean: 5.5004e-01
169
+ 2024-06-12 02:54:38,759 INFO: [5468_..][Iter: 530, lr:(2.933e-04,2.933e-06,2.933e-05,)] [eta: 0:04:37] loss: 6.7273e-01 Norm_mean: 5.5004e-01
170
+ 2024-06-12 02:54:51,002 INFO: [5468_..][Iter: 540, lr:(2.800e-04,2.800e-06,2.800e-05,)] [eta: 0:04:24] loss: 1.2699e+00 Norm_mean: 5.5004e-01
171
+ 2024-06-12 02:55:03,238 INFO: [5468_..][Iter: 550, lr:(2.667e-04,2.667e-06,2.667e-05,)] [eta: 0:04:11] loss: 6.2747e-01 Norm_mean: 5.5004e-01
172
+ 2024-06-12 02:55:15,543 INFO: [5468_..][Iter: 560, lr:(2.533e-04,2.533e-06,2.533e-05,)] [eta: 0:03:59] loss: 1.4993e+00 Norm_mean: 5.5004e-01
173
+ 2024-06-12 02:55:27,784 INFO: [5468_..][Iter: 570, lr:(2.400e-04,2.400e-06,2.400e-05,)] [eta: 0:03:46] loss: 5.7829e-01 Norm_mean: 5.5004e-01
174
+ 2024-06-12 02:55:40,136 INFO: [5468_..][Iter: 580, lr:(2.267e-04,2.267e-06,2.267e-05,)] [eta: 0:03:33] loss: 6.5494e-01 Norm_mean: 5.5004e-01
175
+ 2024-06-12 02:55:52,461 INFO: [5468_..][Iter: 590, lr:(2.133e-04,2.133e-06,2.133e-05,)] [eta: 0:03:20] loss: 5.2984e-01 Norm_mean: 5.5004e-01
176
+ 2024-06-12 02:56:04,727 INFO: [5468_..][Iter: 600, lr:(2.000e-04,2.000e-06,2.000e-05,)] [eta: 0:03:08] loss: 7.2001e-02 Norm_mean: 5.5004e-01
177
+ 2024-06-12 02:56:17,283 INFO: [5468_..][Iter: 610, lr:(1.867e-04,1.867e-06,1.867e-05,)] [eta: 0:02:55] loss: 3.5551e-01 Norm_mean: 5.5004e-01
178
+ 2024-06-12 02:56:29,458 INFO: [5468_..][Iter: 620, lr:(1.733e-04,1.733e-06,1.733e-05,)] [eta: 0:02:42] loss: 7.2537e-01 Norm_mean: 5.5004e-01
179
+ 2024-06-12 02:56:42,015 INFO: [5468_..][Iter: 630, lr:(1.600e-04,1.600e-06,1.600e-05,)] [eta: 0:02:30] loss: 1.3060e+00 Norm_mean: 5.5004e-01
180
+ 2024-06-12 02:56:54,155 INFO: [5468_..][Iter: 640, lr:(1.467e-04,1.467e-06,1.467e-05,)] [eta: 0:02:17] loss: 6.0281e-01 Norm_mean: 5.5004e-01
181
+ 2024-06-12 02:57:06,395 INFO: [5468_..][Iter: 650, lr:(1.333e-04,1.333e-06,1.333e-05,)] [eta: 0:02:04] loss: 1.3476e+00 Norm_mean: 5.5004e-01
182
+ 2024-06-12 02:57:18,388 INFO: [5468_..][Iter: 660, lr:(1.200e-04,1.200e-06,1.200e-05,)] [eta: 0:01:52] loss: 1.6601e+00 Norm_mean: 5.5004e-01
183
+ 2024-06-12 02:57:30,607 INFO: [5468_..][Iter: 670, lr:(1.067e-04,1.067e-06,1.067e-05,)] [eta: 0:01:39] loss: 1.1768e-01 Norm_mean: 5.5004e-01
184
+ 2024-06-12 02:57:42,804 INFO: [5468_..][Iter: 680, lr:(9.333e-05,9.333e-07,9.333e-06,)] [eta: 0:01:26] loss: 1.9577e-01 Norm_mean: 5.5004e-01
185
+ 2024-06-12 02:57:55,018 INFO: [5468_..][Iter: 690, lr:(8.000e-05,8.000e-07,8.000e-06,)] [eta: 0:01:14] loss: 1.7908e+00 Norm_mean: 5.5004e-01
186
+ 2024-06-12 02:58:07,173 INFO: [5468_..][Iter: 700, lr:(6.667e-05,6.667e-07,6.667e-06,)] [eta: 0:01:01] loss: 7.1926e-01 Norm_mean: 5.5004e-01
187
+ 2024-06-12 02:58:19,291 INFO: [5468_..][Iter: 710, lr:(5.333e-05,5.333e-07,5.333e-06,)] [eta: 0:00:48] loss: 7.9050e-01 Norm_mean: 5.5004e-01
188
+ 2024-06-12 02:58:31,159 INFO: [5468_..][Iter: 720, lr:(4.000e-05,4.000e-07,4.000e-06,)] [eta: 0:00:36] loss: 2.6545e-01 Norm_mean: 5.5004e-01
189
+ 2024-06-12 02:58:43,107 INFO: [5468_..][Iter: 730, lr:(2.667e-05,2.667e-07,2.667e-06,)] [eta: 0:00:23] loss: 1.2637e+00 Norm_mean: 5.5004e-01
190
+ 2024-06-12 02:58:55,208 INFO: [5468_..][Iter: 740, lr:(1.333e-05,1.333e-07,1.333e-06,)] [eta: 0:00:11] loss: 4.1773e-01 Norm_mean: 5.5004e-01
191
+ 2024-06-12 02:59:07,338 INFO: [5468_..][Iter: 750, lr:(0.000e+00,0.000e+00,0.000e+00,)] [eta: -1 day, 23:59:59] loss: 4.7732e-01 Norm_mean: 5.5004e-01
192
+ 2024-06-12 02:59:07,491 INFO: Save state to /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/models/edlora_model-latest.pth
193
+ 2024-06-12 02:59:07,491 INFO: Start validation /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/models/edlora_model-latest.pth: