added single-concept: woody
Browse files
experiments/single-concept/woody/5468_woody_ortho.yml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GENERATE TIME: Wed Jun 12 02:41:39 2024
|
2 |
+
# CMD:
|
3 |
+
# train_edlora.py -opt single-concept/train_configs/5468_woody_ortho.yml
|
4 |
+
|
5 |
+
name: 5468_woody_ortho
|
6 |
+
manual_seed: 5468
|
7 |
+
mixed_precision: fp16
|
8 |
+
gradient_accumulation_steps: 1
|
9 |
+
datasets:
|
10 |
+
train:
|
11 |
+
name: LoraDataset
|
12 |
+
concept_list: single-concept/data_configs/woody.json
|
13 |
+
use_caption: true
|
14 |
+
use_mask: true
|
15 |
+
instance_transform:
|
16 |
+
- type: HumanResizeCropFinalV3
|
17 |
+
size: 512
|
18 |
+
crop_p: 0.5
|
19 |
+
- type: ToTensor
|
20 |
+
- type: Normalize
|
21 |
+
mean:
|
22 |
+
- 0.5
|
23 |
+
std:
|
24 |
+
- 0.5
|
25 |
+
- type: ShuffleCaption
|
26 |
+
keep_token_num: 1
|
27 |
+
- type: EnhanceText
|
28 |
+
enhance_type: human
|
29 |
+
replace_mapping:
|
30 |
+
<TOK>: <woody1> <woody2>
|
31 |
+
batch_size_per_gpu: 2
|
32 |
+
dataset_enlarge_ratio: 500
|
33 |
+
val_vis:
|
34 |
+
name: PromptDataset
|
35 |
+
prompts: single-concept/validation_prompts/characters/test_man.txt
|
36 |
+
num_samples_per_prompt: 8
|
37 |
+
latent_size:
|
38 |
+
- 4
|
39 |
+
- 64
|
40 |
+
- 64
|
41 |
+
replace_mapping:
|
42 |
+
<TOK>: <woody1> <woody2>
|
43 |
+
batch_size_per_gpu: 4
|
44 |
+
models:
|
45 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
46 |
+
enable_edlora: true
|
47 |
+
finetune_cfg:
|
48 |
+
text_embedding:
|
49 |
+
enable_tuning: true
|
50 |
+
lr: 0.001
|
51 |
+
text_encoder:
|
52 |
+
enable_tuning: true
|
53 |
+
lora_cfg:
|
54 |
+
rank: 5
|
55 |
+
alpha: 1.0
|
56 |
+
where: CLIPAttention
|
57 |
+
lr: 1.0e-05
|
58 |
+
unet:
|
59 |
+
enable_tuning: true
|
60 |
+
lora_cfg:
|
61 |
+
rank: 5
|
62 |
+
alpha: 1.0
|
63 |
+
where: Attention
|
64 |
+
lr: 0.0001
|
65 |
+
new_concept_token: <woody1>+<woody2>
|
66 |
+
initializer_token: <rand-0.013>+man
|
67 |
+
noise_offset: 0.01
|
68 |
+
attn_reg_weight: 0.01
|
69 |
+
reg_full_identity: false
|
70 |
+
use_mask_loss: true
|
71 |
+
gradient_checkpoint: false
|
72 |
+
enable_xformers: true
|
73 |
+
path:
|
74 |
+
pretrain_network: null
|
75 |
+
train:
|
76 |
+
optim_g:
|
77 |
+
type: AdamW
|
78 |
+
lr: 0.0
|
79 |
+
weight_decay: 0.01
|
80 |
+
betas:
|
81 |
+
- 0.9
|
82 |
+
- 0.999
|
83 |
+
unet_kv_drop_rate: 0
|
84 |
+
scheduler: linear
|
85 |
+
emb_norm_threshold: 0.55
|
86 |
+
val:
|
87 |
+
val_during_save: true
|
88 |
+
compose_visualize: true
|
89 |
+
alpha_list:
|
90 |
+
- 0
|
91 |
+
- 0.7
|
92 |
+
- 1.0
|
93 |
+
sample:
|
94 |
+
num_inference_steps: 50
|
95 |
+
guidance_scale: 7.5
|
96 |
+
logger:
|
97 |
+
print_freq: 10
|
98 |
+
save_checkpoint_freq: 10000.0
|
experiments/single-concept/woody/models/edlora_model-latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e6feadc85448a4f2e38f210cb063a6d04987fabd19cf005f8a093c7539abb45
|
3 |
+
size 35173046
|
experiments/single-concept/woody/train_5468_woody_ortho_20240612_024139.log
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-06-12 02:41:39,471 INFO: Distributed environment: MULTI_GPU Backend: nccl
|
2 |
+
Num processes: 2
|
3 |
+
Process index: 0
|
4 |
+
Local process index: 0
|
5 |
+
Device: cuda:0
|
6 |
+
|
7 |
+
Mixed precision type: fp16
|
8 |
+
|
9 |
+
2024-06-12 02:41:39,471 INFO:
|
10 |
+
name: 5468_woody_ortho
|
11 |
+
manual_seed: 5468
|
12 |
+
mixed_precision: fp16
|
13 |
+
gradient_accumulation_steps: 1
|
14 |
+
datasets:[
|
15 |
+
train:[
|
16 |
+
name: LoraDataset
|
17 |
+
concept_list: single-concept/data_configs/woody.json
|
18 |
+
use_caption: True
|
19 |
+
use_mask: True
|
20 |
+
instance_transform: [{'type': 'HumanResizeCropFinalV3', 'size': 512, 'crop_p': 0.5}, {'type': 'ToTensor'}, {'type': 'Normalize', 'mean': [0.5], 'std': [0.5]}, {'type': 'ShuffleCaption', 'keep_token_num': 1}, {'type': 'EnhanceText', 'enhance_type': 'human'}]
|
21 |
+
replace_mapping:[
|
22 |
+
<TOK>: <woody1> <woody2>
|
23 |
+
]
|
24 |
+
batch_size_per_gpu: 2
|
25 |
+
dataset_enlarge_ratio: 500
|
26 |
+
]
|
27 |
+
val_vis:[
|
28 |
+
name: PromptDataset
|
29 |
+
prompts: single-concept/validation_prompts/characters/test_man.txt
|
30 |
+
num_samples_per_prompt: 8
|
31 |
+
latent_size: [4, 64, 64]
|
32 |
+
replace_mapping:[
|
33 |
+
<TOK>: <woody1> <woody2>
|
34 |
+
]
|
35 |
+
batch_size_per_gpu: 4
|
36 |
+
]
|
37 |
+
]
|
38 |
+
models:[
|
39 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
40 |
+
enable_edlora: True
|
41 |
+
finetune_cfg:[
|
42 |
+
text_embedding:[
|
43 |
+
enable_tuning: True
|
44 |
+
lr: 0.001
|
45 |
+
]
|
46 |
+
text_encoder:[
|
47 |
+
enable_tuning: True
|
48 |
+
lora_cfg:[
|
49 |
+
rank: 5
|
50 |
+
alpha: 1.0
|
51 |
+
where: CLIPAttention
|
52 |
+
]
|
53 |
+
lr: 1e-05
|
54 |
+
]
|
55 |
+
unet:[
|
56 |
+
enable_tuning: True
|
57 |
+
lora_cfg:[
|
58 |
+
rank: 5
|
59 |
+
alpha: 1.0
|
60 |
+
where: Attention
|
61 |
+
]
|
62 |
+
lr: 0.0001
|
63 |
+
]
|
64 |
+
]
|
65 |
+
new_concept_token: <woody1>+<woody2>
|
66 |
+
initializer_token: <rand-0.013>+man
|
67 |
+
noise_offset: 0.01
|
68 |
+
attn_reg_weight: 0.01
|
69 |
+
reg_full_identity: False
|
70 |
+
use_mask_loss: True
|
71 |
+
gradient_checkpoint: False
|
72 |
+
enable_xformers: True
|
73 |
+
]
|
74 |
+
path:[
|
75 |
+
pretrain_network: None
|
76 |
+
experiments_root: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho
|
77 |
+
models: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/models
|
78 |
+
log: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho
|
79 |
+
visualization: /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/visualization
|
80 |
+
]
|
81 |
+
train:[
|
82 |
+
optim_g:[
|
83 |
+
type: AdamW
|
84 |
+
lr: 0.0
|
85 |
+
weight_decay: 0.01
|
86 |
+
betas: [0.9, 0.999]
|
87 |
+
]
|
88 |
+
unet_kv_drop_rate: 0
|
89 |
+
scheduler: linear
|
90 |
+
emb_norm_threshold: 0.55
|
91 |
+
]
|
92 |
+
val:[
|
93 |
+
val_during_save: True
|
94 |
+
compose_visualize: True
|
95 |
+
alpha_list: [0, 0.7, 1.0]
|
96 |
+
sample:[
|
97 |
+
num_inference_steps: 50
|
98 |
+
guidance_scale: 7.5
|
99 |
+
]
|
100 |
+
]
|
101 |
+
logger:[
|
102 |
+
print_freq: 10
|
103 |
+
save_checkpoint_freq: 10000.0
|
104 |
+
]
|
105 |
+
is_train: True
|
106 |
+
|
107 |
+
2024-06-12 02:43:20,128 INFO: <woody1> (49408-49423) is random initialized by: <rand-0.013>
|
108 |
+
2024-06-12 02:43:20,868 INFO: <woody2> (49424-49439) is random initialized by existing token (man): 786
|
109 |
+
2024-06-12 02:43:20,873 INFO: optimizing embedding using lr: 0.001
|
110 |
+
2024-06-12 02:43:21,420 INFO: optimizing text_encoder (48 LoRAs), using lr: 1e-05
|
111 |
+
2024-06-12 02:43:22,674 INFO: optimizing unet (128 LoRAs), using lr: 0.0001
|
112 |
+
2024-06-12 02:43:26,045 INFO: ***** Running training *****
|
113 |
+
2024-06-12 02:43:26,045 INFO: Num examples = 3000
|
114 |
+
2024-06-12 02:43:26,045 INFO: Instantaneous batch size per device = 2
|
115 |
+
2024-06-12 02:43:26,046 INFO: Total train batch size (w. parallel, distributed & accumulation) = 4
|
116 |
+
2024-06-12 02:43:26,046 INFO: Total optimization steps = 750.0
|
117 |
+
2024-06-12 02:44:06,961 INFO: [5468_..][Iter: 10, lr:(9.867e-04,9.867e-06,9.867e-05,)] [eta: 0:45:48] loss: 5.7099e-01 Norm_mean: 3.6939e-01
|
118 |
+
2024-06-12 02:44:18,766 INFO: [5468_..][Iter: 20, lr:(9.733e-04,9.733e-06,9.733e-05,)] [eta: 0:30:30] loss: 6.7207e-01 Norm_mean: 3.8671e-01
|
119 |
+
2024-06-12 02:44:30,974 INFO: [5468_..][Iter: 30, lr:(9.600e-04,9.600e-06,9.600e-05,)] [eta: 0:25:05] loss: 1.1701e+00 Norm_mean: 3.9964e-01
|
120 |
+
2024-06-12 02:44:42,911 INFO: [5468_..][Iter: 40, lr:(9.467e-04,9.467e-06,9.467e-05,)] [eta: 0:22:09] loss: 1.2839e+00 Norm_mean: 4.1098e-01
|
121 |
+
2024-06-12 02:44:54,917 INFO: [5468_..][Iter: 50, lr:(9.333e-04,9.333e-06,9.333e-05,)] [eta: 0:20:18] loss: 6.2330e-01 Norm_mean: 4.2076e-01
|
122 |
+
2024-06-12 02:45:07,042 INFO: [5468_..][Iter: 60, lr:(9.200e-04,9.200e-06,9.200e-05,)] [eta: 0:19:00] loss: 9.9929e-01 Norm_mean: 4.2928e-01
|
123 |
+
2024-06-12 02:45:19,059 INFO: [5468_..][Iter: 70, lr:(9.067e-04,9.067e-06,9.067e-05,)] [eta: 0:18:00] loss: 2.5575e-01 Norm_mean: 4.3723e-01
|
124 |
+
2024-06-12 02:45:31,197 INFO: [5468_..][Iter: 80, lr:(8.933e-04,8.933e-06,8.933e-05,)] [eta: 0:17:13] loss: 1.2155e+00 Norm_mean: 4.4369e-01
|
125 |
+
2024-06-12 02:45:43,729 INFO: [5468_..][Iter: 90, lr:(8.800e-04,8.800e-06,8.800e-05,)] [eta: 0:16:37] loss: 2.6324e-01 Norm_mean: 4.4957e-01
|
126 |
+
2024-06-12 02:45:56,110 INFO: [5468_..][Iter: 100, lr:(8.667e-04,8.667e-06,8.667e-05,)] [eta: 0:16:04] loss: 1.6536e+00 Norm_mean: 4.5521e-01
|
127 |
+
2024-06-12 02:46:08,328 INFO: [5468_..][Iter: 110, lr:(8.533e-04,8.533e-06,8.533e-05,)] [eta: 0:15:34] loss: 5.7876e-01 Norm_mean: 4.6003e-01
|
128 |
+
2024-06-12 02:46:20,526 INFO: [5468_..][Iter: 120, lr:(8.400e-04,8.400e-06,8.400e-05,)] [eta: 0:15:07] loss: 3.8680e-01 Norm_mean: 4.6427e-01
|
129 |
+
2024-06-12 02:46:32,565 INFO: [5468_..][Iter: 130, lr:(8.267e-04,8.267e-06,8.267e-05,)] [eta: 0:14:41] loss: 9.8066e-02 Norm_mean: 4.6867e-01
|
130 |
+
2024-06-12 02:46:44,843 INFO: [5468_..][Iter: 140, lr:(8.133e-04,8.133e-06,8.133e-05,)] [eta: 0:14:18] loss: 5.0228e-01 Norm_mean: 4.7362e-01
|
131 |
+
2024-06-12 02:46:57,031 INFO: [5468_..][Iter: 150, lr:(8.000e-04,8.000e-06,8.000e-05,)] [eta: 0:13:56] loss: 4.5112e-01 Norm_mean: 4.7771e-01
|
132 |
+
2024-06-12 02:47:09,303 INFO: [5468_..][Iter: 160, lr:(7.867e-04,7.867e-06,7.867e-05,)] [eta: 0:13:36] loss: 8.8030e-01 Norm_mean: 4.8141e-01
|
133 |
+
2024-06-12 02:47:21,632 INFO: [5468_..][Iter: 170, lr:(7.733e-04,7.733e-06,7.733e-05,)] [eta: 0:13:17] loss: 1.0749e+00 Norm_mean: 4.8524e-01
|
134 |
+
2024-06-12 02:47:33,899 INFO: [5468_..][Iter: 180, lr:(7.600e-04,7.600e-06,7.600e-05,)] [eta: 0:12:59] loss: 4.8346e-01 Norm_mean: 4.8971e-01
|
135 |
+
2024-06-12 02:47:46,179 INFO: [5468_..][Iter: 190, lr:(7.467e-04,7.467e-06,7.467e-05,)] [eta: 0:12:41] loss: 3.2656e-01 Norm_mean: 4.9335e-01
|
136 |
+
2024-06-12 02:47:58,373 INFO: [5468_..][Iter: 200, lr:(7.333e-04,7.333e-06,7.333e-05,)] [eta: 0:12:23] loss: 1.1152e+00 Norm_mean: 4.9630e-01
|
137 |
+
2024-06-12 02:48:10,567 INFO: [5468_..][Iter: 210, lr:(7.200e-04,7.200e-06,7.200e-05,)] [eta: 0:12:06] loss: 2.1954e-01 Norm_mean: 4.9981e-01
|
138 |
+
2024-06-12 02:48:22,717 INFO: [5468_..][Iter: 220, lr:(7.067e-04,7.067e-06,7.067e-05,)] [eta: 0:11:50] loss: 1.0311e+00 Norm_mean: 5.0368e-01
|
139 |
+
2024-06-12 02:48:34,814 INFO: [5468_..][Iter: 230, lr:(6.933e-04,6.933e-06,6.933e-05,)] [eta: 0:11:33] loss: 3.1768e-01 Norm_mean: 5.0728e-01
|
140 |
+
2024-06-12 02:48:46,979 INFO: [5468_..][Iter: 240, lr:(6.800e-04,6.800e-06,6.800e-05,)] [eta: 0:11:17] loss: 2.7627e+00 Norm_mean: 5.1148e-01
|
141 |
+
2024-06-12 02:48:58,988 INFO: [5468_..][Iter: 250, lr:(6.667e-04,6.667e-06,6.667e-05,)] [eta: 0:11:01] loss: 9.6659e-01 Norm_mean: 5.1515e-01
|
142 |
+
2024-06-12 02:49:11,312 INFO: [5468_..][Iter: 260, lr:(6.533e-04,6.533e-06,6.533e-05,)] [eta: 0:10:46] loss: 5.9158e-01 Norm_mean: 5.1849e-01
|
143 |
+
2024-06-12 02:49:23,229 INFO: [5468_..][Iter: 270, lr:(6.400e-04,6.400e-06,6.400e-05,)] [eta: 0:10:31] loss: 8.9412e-01 Norm_mean: 5.2158e-01
|
144 |
+
2024-06-12 02:49:35,194 INFO: [5468_..][Iter: 280, lr:(6.267e-04,6.267e-06,6.267e-05,)] [eta: 0:10:16] loss: 7.5468e-01 Norm_mean: 5.2417e-01
|
145 |
+
2024-06-12 02:49:47,086 INFO: [5468_..][Iter: 290, lr:(6.133e-04,6.133e-06,6.133e-05,)] [eta: 0:10:01] loss: 3.6878e-01 Norm_mean: 5.2664e-01
|
146 |
+
2024-06-12 02:49:59,200 INFO: [5468_..][Iter: 300, lr:(6.000e-04,6.000e-06,6.000e-05,)] [eta: 0:09:46] loss: 7.5434e-02 Norm_mean: 5.2912e-01
|
147 |
+
2024-06-12 02:50:11,234 INFO: [5468_..][Iter: 310, lr:(5.867e-04,5.867e-06,5.867e-05,)] [eta: 0:09:31] loss: 7.0255e-02 Norm_mean: 5.3135e-01
|
148 |
+
2024-06-12 02:50:23,281 INFO: [5468_..][Iter: 320, lr:(5.733e-04,5.733e-06,5.733e-05,)] [eta: 0:09:17] loss: 7.6986e-01 Norm_mean: 5.3378e-01
|
149 |
+
2024-06-12 02:50:35,246 INFO: [5468_..][Iter: 330, lr:(5.600e-04,5.600e-06,5.600e-05,)] [eta: 0:09:03] loss: 7.8151e-01 Norm_mean: 5.3608e-01
|
150 |
+
2024-06-12 02:50:47,352 INFO: [5468_..][Iter: 340, lr:(5.467e-04,5.467e-06,5.467e-05,)] [eta: 0:08:49] loss: 1.9506e-01 Norm_mean: 5.3830e-01
|
151 |
+
2024-06-12 02:50:59,349 INFO: [5468_..][Iter: 350, lr:(5.333e-04,5.333e-06,5.333e-05,)] [eta: 0:08:35] loss: 2.5245e-01 Norm_mean: 5.4062e-01
|
152 |
+
2024-06-12 02:51:11,361 INFO: [5468_..][Iter: 360, lr:(5.200e-04,5.200e-06,5.200e-05,)] [eta: 0:08:21] loss: 6.4811e-01 Norm_mean: 5.4256e-01
|
153 |
+
2024-06-12 02:51:23,561 INFO: [5468_..][Iter: 370, lr:(5.067e-04,5.067e-06,5.067e-05,)] [eta: 0:08:07] loss: 1.5239e+00 Norm_mean: 5.4466e-01
|
154 |
+
2024-06-12 02:51:35,924 INFO: [5468_..][Iter: 380, lr:(4.933e-04,4.933e-06,4.933e-05,)] [eta: 0:07:54] loss: 4.0211e-02 Norm_mean: 5.4676e-01
|
155 |
+
2024-06-12 02:51:48,339 INFO: [5468_..][Iter: 390, lr:(4.800e-04,4.800e-06,4.800e-05,)] [eta: 0:07:41] loss: 9.7101e-01 Norm_mean: 5.4847e-01
|
156 |
+
2024-06-12 02:52:00,363 INFO: [5468_..][Iter: 400, lr:(4.667e-04,4.667e-06,4.667e-05,)] [eta: 0:07:27] loss: 2.0671e-01 Norm_mean: 5.5004e-01
|
157 |
+
2024-06-12 02:52:12,307 INFO: [5468_..][Iter: 410, lr:(4.533e-04,4.533e-06,4.533e-05,)] [eta: 0:07:14] loss: 1.5877e-01 Norm_mean: 5.5004e-01
|
158 |
+
2024-06-12 02:52:24,574 INFO: [5468_..][Iter: 420, lr:(4.400e-04,4.400e-06,4.400e-05,)] [eta: 0:07:00] loss: 2.5391e-01 Norm_mean: 5.5004e-01
|
159 |
+
2024-06-12 02:52:36,622 INFO: [5468_..][Iter: 430, lr:(4.267e-04,4.267e-06,4.267e-05,)] [eta: 0:06:47] loss: 1.1532e-01 Norm_mean: 5.5004e-01
|
160 |
+
2024-06-12 02:52:48,741 INFO: [5468_..][Iter: 440, lr:(4.133e-04,4.133e-06,4.133e-05,)] [eta: 0:06:34] loss: 3.0851e-01 Norm_mean: 5.5004e-01
|
161 |
+
2024-06-12 02:53:01,070 INFO: [5468_..][Iter: 450, lr:(4.000e-04,4.000e-06,4.000e-05,)] [eta: 0:06:21] loss: 7.8738e-01 Norm_mean: 5.5004e-01
|
162 |
+
2024-06-12 02:53:13,317 INFO: [5468_..][Iter: 460, lr:(3.867e-04,3.867e-06,3.867e-05,)] [eta: 0:06:08] loss: 5.9795e-01 Norm_mean: 5.5004e-01
|
163 |
+
2024-06-12 02:53:25,576 INFO: [5468_..][Iter: 470, lr:(3.733e-04,3.733e-06,3.733e-05,)] [eta: 0:05:55] loss: 4.9539e-01 Norm_mean: 5.5004e-01
|
164 |
+
2024-06-12 02:53:37,715 INFO: [5468_..][Iter: 480, lr:(3.600e-04,3.600e-06,3.600e-05,)] [eta: 0:05:42] loss: 3.8771e-01 Norm_mean: 5.5004e-01
|
165 |
+
2024-06-12 02:53:49,877 INFO: [5468_..][Iter: 490, lr:(3.467e-04,3.467e-06,3.467e-05,)] [eta: 0:05:29] loss: 1.5134e+00 Norm_mean: 5.5004e-01
|
166 |
+
2024-06-12 02:54:02,035 INFO: [5468_..][Iter: 500, lr:(3.333e-04,3.333e-06,3.333e-05,)] [eta: 0:05:16] loss: 3.3040e-01 Norm_mean: 5.5004e-01
|
167 |
+
2024-06-12 02:54:14,330 INFO: [5468_..][Iter: 510, lr:(3.200e-04,3.200e-06,3.200e-05,)] [eta: 0:05:03] loss: 1.4163e+00 Norm_mean: 5.5004e-01
|
168 |
+
2024-06-12 02:54:26,506 INFO: [5468_..][Iter: 520, lr:(3.067e-04,3.067e-06,3.067e-05,)] [eta: 0:04:50] loss: 9.3483e-01 Norm_mean: 5.5004e-01
|
169 |
+
2024-06-12 02:54:38,759 INFO: [5468_..][Iter: 530, lr:(2.933e-04,2.933e-06,2.933e-05,)] [eta: 0:04:37] loss: 6.7273e-01 Norm_mean: 5.5004e-01
|
170 |
+
2024-06-12 02:54:51,002 INFO: [5468_..][Iter: 540, lr:(2.800e-04,2.800e-06,2.800e-05,)] [eta: 0:04:24] loss: 1.2699e+00 Norm_mean: 5.5004e-01
|
171 |
+
2024-06-12 02:55:03,238 INFO: [5468_..][Iter: 550, lr:(2.667e-04,2.667e-06,2.667e-05,)] [eta: 0:04:11] loss: 6.2747e-01 Norm_mean: 5.5004e-01
|
172 |
+
2024-06-12 02:55:15,543 INFO: [5468_..][Iter: 560, lr:(2.533e-04,2.533e-06,2.533e-05,)] [eta: 0:03:59] loss: 1.4993e+00 Norm_mean: 5.5004e-01
|
173 |
+
2024-06-12 02:55:27,784 INFO: [5468_..][Iter: 570, lr:(2.400e-04,2.400e-06,2.400e-05,)] [eta: 0:03:46] loss: 5.7829e-01 Norm_mean: 5.5004e-01
|
174 |
+
2024-06-12 02:55:40,136 INFO: [5468_..][Iter: 580, lr:(2.267e-04,2.267e-06,2.267e-05,)] [eta: 0:03:33] loss: 6.5494e-01 Norm_mean: 5.5004e-01
|
175 |
+
2024-06-12 02:55:52,461 INFO: [5468_..][Iter: 590, lr:(2.133e-04,2.133e-06,2.133e-05,)] [eta: 0:03:20] loss: 5.2984e-01 Norm_mean: 5.5004e-01
|
176 |
+
2024-06-12 02:56:04,727 INFO: [5468_..][Iter: 600, lr:(2.000e-04,2.000e-06,2.000e-05,)] [eta: 0:03:08] loss: 7.2001e-02 Norm_mean: 5.5004e-01
|
177 |
+
2024-06-12 02:56:17,283 INFO: [5468_..][Iter: 610, lr:(1.867e-04,1.867e-06,1.867e-05,)] [eta: 0:02:55] loss: 3.5551e-01 Norm_mean: 5.5004e-01
|
178 |
+
2024-06-12 02:56:29,458 INFO: [5468_..][Iter: 620, lr:(1.733e-04,1.733e-06,1.733e-05,)] [eta: 0:02:42] loss: 7.2537e-01 Norm_mean: 5.5004e-01
|
179 |
+
2024-06-12 02:56:42,015 INFO: [5468_..][Iter: 630, lr:(1.600e-04,1.600e-06,1.600e-05,)] [eta: 0:02:30] loss: 1.3060e+00 Norm_mean: 5.5004e-01
|
180 |
+
2024-06-12 02:56:54,155 INFO: [5468_..][Iter: 640, lr:(1.467e-04,1.467e-06,1.467e-05,)] [eta: 0:02:17] loss: 6.0281e-01 Norm_mean: 5.5004e-01
|
181 |
+
2024-06-12 02:57:06,395 INFO: [5468_..][Iter: 650, lr:(1.333e-04,1.333e-06,1.333e-05,)] [eta: 0:02:04] loss: 1.3476e+00 Norm_mean: 5.5004e-01
|
182 |
+
2024-06-12 02:57:18,388 INFO: [5468_..][Iter: 660, lr:(1.200e-04,1.200e-06,1.200e-05,)] [eta: 0:01:52] loss: 1.6601e+00 Norm_mean: 5.5004e-01
|
183 |
+
2024-06-12 02:57:30,607 INFO: [5468_..][Iter: 670, lr:(1.067e-04,1.067e-06,1.067e-05,)] [eta: 0:01:39] loss: 1.1768e-01 Norm_mean: 5.5004e-01
|
184 |
+
2024-06-12 02:57:42,804 INFO: [5468_..][Iter: 680, lr:(9.333e-05,9.333e-07,9.333e-06,)] [eta: 0:01:26] loss: 1.9577e-01 Norm_mean: 5.5004e-01
|
185 |
+
2024-06-12 02:57:55,018 INFO: [5468_..][Iter: 690, lr:(8.000e-05,8.000e-07,8.000e-06,)] [eta: 0:01:14] loss: 1.7908e+00 Norm_mean: 5.5004e-01
|
186 |
+
2024-06-12 02:58:07,173 INFO: [5468_..][Iter: 700, lr:(6.667e-05,6.667e-07,6.667e-06,)] [eta: 0:01:01] loss: 7.1926e-01 Norm_mean: 5.5004e-01
|
187 |
+
2024-06-12 02:58:19,291 INFO: [5468_..][Iter: 710, lr:(5.333e-05,5.333e-07,5.333e-06,)] [eta: 0:00:48] loss: 7.9050e-01 Norm_mean: 5.5004e-01
|
188 |
+
2024-06-12 02:58:31,159 INFO: [5468_..][Iter: 720, lr:(4.000e-05,4.000e-07,4.000e-06,)] [eta: 0:00:36] loss: 2.6545e-01 Norm_mean: 5.5004e-01
|
189 |
+
2024-06-12 02:58:43,107 INFO: [5468_..][Iter: 730, lr:(2.667e-05,2.667e-07,2.667e-06,)] [eta: 0:00:23] loss: 1.2637e+00 Norm_mean: 5.5004e-01
|
190 |
+
2024-06-12 02:58:55,208 INFO: [5468_..][Iter: 740, lr:(1.333e-05,1.333e-07,1.333e-06,)] [eta: 0:00:11] loss: 4.1773e-01 Norm_mean: 5.5004e-01
|
191 |
+
2024-06-12 02:59:07,338 INFO: [5468_..][Iter: 750, lr:(0.000e+00,0.000e+00,0.000e+00,)] [eta: -1 day, 23:59:59] loss: 4.7732e-01 Norm_mean: 5.5004e-01
|
192 |
+
2024-06-12 02:59:07,491 INFO: Save state to /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/models/edlora_model-latest.pth
|
193 |
+
2024-06-12 02:59:07,491 INFO: Start validation /home/ujinsong/workspace/ortha/experiments/5468_woody_ortho/models/edlora_model-latest.pth:
|