ujin-song commited on
Commit
9e3e754
1 Parent(s): ec6524b

upload Elastigirl weights

Browse files
experiments/single-concept/elastigirl/.DS_Store ADDED
Binary file (6.15 kB). View file
 
experiments/single-concept/elastigirl/3101_elastigirl_ortho.yml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GENERATE TIME: Wed Jun 12 14:30:54 2024
2
+ # CMD:
3
+ # train_edlora.py -opt single-concept/train_configs/3101_elastigirl_ortho.yml
4
+
5
+ name: 3101_elastigirl_ortho
6
+ manual_seed: 3101
7
+ mixed_precision: fp16
8
+ gradient_accumulation_steps: 1
9
+ datasets:
10
+ train:
11
+ name: LoraDataset
12
+ concept_list: single-concept/data_configs/elastigirl.json
13
+ use_caption: true
14
+ use_mask: true
15
+ instance_transform:
16
+ - type: HumanResizeCropFinalV3
17
+ size: 512
18
+ crop_p: 0.5
19
+ - type: ToTensor
20
+ - type: Normalize
21
+ mean:
22
+ - 0.5
23
+ std:
24
+ - 0.5
25
+ - type: ShuffleCaption
26
+ keep_token_num: 1
27
+ - type: EnhanceText
28
+ enhance_type: human
29
+ replace_mapping:
30
+ <TOK>: <elastigirl1> <elastigirl2>
31
+ batch_size_per_gpu: 2
32
+ dataset_enlarge_ratio: 500
33
+ val_vis:
34
+ name: PromptDataset
35
+ prompts: single-concept/validation_prompts/characters/test_woman.txt
36
+ num_samples_per_prompt: 8
37
+ latent_size:
38
+ - 4
39
+ - 64
40
+ - 64
41
+ replace_mapping:
42
+ <TOK>: <elastigirl1> <elastigirl2>
43
+ batch_size_per_gpu: 4
44
+ models:
45
+ pretrained_path: nitrosocke/mo-di-diffusion
46
+ enable_edlora: true
47
+ finetune_cfg:
48
+ text_embedding:
49
+ enable_tuning: true
50
+ lr: 0.001
51
+ text_encoder:
52
+ enable_tuning: true
53
+ lora_cfg:
54
+ rank: 5
55
+ alpha: 1.0
56
+ where: CLIPAttention
57
+ lr: 1.0e-05
58
+ unet:
59
+ enable_tuning: true
60
+ lora_cfg:
61
+ rank: 5
62
+ alpha: 1.0
63
+ where: Attention
64
+ lr: 0.0001
65
+ new_concept_token: <elastigirl1>+<elastigirl2>
66
+ initializer_token: <rand-0.013>+woman
67
+ noise_offset: 0.01
68
+ attn_reg_weight: 0.01
69
+ reg_full_identity: false
70
+ use_mask_loss: true
71
+ gradient_checkpoint: false
72
+ enable_xformers: true
73
+ path:
74
+ pretrain_network: null
75
+ train:
76
+ optim_g:
77
+ type: AdamW
78
+ lr: 0.0
79
+ weight_decay: 0.01
80
+ betas:
81
+ - 0.9
82
+ - 0.999
83
+ unet_kv_drop_rate: 0
84
+ scheduler: linear
85
+ emb_norm_threshold: 0.55
86
+ val:
87
+ val_during_save: false
88
+ compose_visualize: false
89
+ alpha_list:
90
+ - 0
91
+ - 0.7
92
+ - 1.0
93
+ sample:
94
+ num_inference_steps: 50
95
+ guidance_scale: 7.5
96
+ logger:
97
+ print_freq: 10
98
+ save_checkpoint_freq: 10000.0
experiments/single-concept/elastigirl/models/edlora_model-latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:574ae8359510362e6d93664c2478e574fa1c3ae25d3e4d86f986d60093589fea
3
+ size 35173046
experiments/single-concept/elastigirl/train_3101_elastigirl_ortho_20240612_143054.log ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2024-06-12 14:30:54,522 INFO: Distributed environment: MULTI_GPU Backend: nccl
2
+ Num processes: 2
3
+ Process index: 0
4
+ Local process index: 0
5
+ Device: cuda:0
6
+
7
+ Mixed precision type: fp16
8
+
9
+ 2024-06-12 14:30:54,523 INFO:
10
+ name: 3101_elastigirl_ortho
11
+ manual_seed: 3101
12
+ mixed_precision: fp16
13
+ gradient_accumulation_steps: 1
14
+ datasets:[
15
+ train:[
16
+ name: LoraDataset
17
+ concept_list: single-concept/data_configs/elastigirl.json
18
+ use_caption: True
19
+ use_mask: True
20
+ instance_transform: [{'type': 'HumanResizeCropFinalV3', 'size': 512, 'crop_p': 0.5}, {'type': 'ToTensor'}, {'type': 'Normalize', 'mean': [0.5], 'std': [0.5]}, {'type': 'ShuffleCaption', 'keep_token_num': 1}, {'type': 'EnhanceText', 'enhance_type': 'human'}]
21
+ replace_mapping:[
22
+ <TOK>: <elastigirl1> <elastigirl2>
23
+ ]
24
+ batch_size_per_gpu: 2
25
+ dataset_enlarge_ratio: 500
26
+ ]
27
+ val_vis:[
28
+ name: PromptDataset
29
+ prompts: single-concept/validation_prompts/characters/test_woman.txt
30
+ num_samples_per_prompt: 8
31
+ latent_size: [4, 64, 64]
32
+ replace_mapping:[
33
+ <TOK>: <elastigirl1> <elastigirl2>
34
+ ]
35
+ batch_size_per_gpu: 4
36
+ ]
37
+ ]
38
+ models:[
39
+ pretrained_path: nitrosocke/mo-di-diffusion
40
+ enable_edlora: True
41
+ finetune_cfg:[
42
+ text_embedding:[
43
+ enable_tuning: True
44
+ lr: 0.001
45
+ ]
46
+ text_encoder:[
47
+ enable_tuning: True
48
+ lora_cfg:[
49
+ rank: 5
50
+ alpha: 1.0
51
+ where: CLIPAttention
52
+ ]
53
+ lr: 1e-05
54
+ ]
55
+ unet:[
56
+ enable_tuning: True
57
+ lora_cfg:[
58
+ rank: 5
59
+ alpha: 1.0
60
+ where: Attention
61
+ ]
62
+ lr: 0.0001
63
+ ]
64
+ ]
65
+ new_concept_token: <elastigirl1>+<elastigirl2>
66
+ initializer_token: <rand-0.013>+woman
67
+ noise_offset: 0.01
68
+ attn_reg_weight: 0.01
69
+ reg_full_identity: False
70
+ use_mask_loss: True
71
+ gradient_checkpoint: False
72
+ enable_xformers: True
73
+ ]
74
+ path:[
75
+ pretrain_network: None
76
+ experiments_root: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho
77
+ models: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho/models
78
+ log: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho
79
+ visualization: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho/visualization
80
+ ]
81
+ train:[
82
+ optim_g:[
83
+ type: AdamW
84
+ lr: 0.0
85
+ weight_decay: 0.01
86
+ betas: [0.9, 0.999]
87
+ ]
88
+ unet_kv_drop_rate: 0
89
+ scheduler: linear
90
+ emb_norm_threshold: 0.55
91
+ ]
92
+ val:[
93
+ val_during_save: False
94
+ compose_visualize: False
95
+ alpha_list: [0, 0.7, 1.0]
96
+ sample:[
97
+ num_inference_steps: 50
98
+ guidance_scale: 7.5
99
+ ]
100
+ ]
101
+ logger:[
102
+ print_freq: 10
103
+ save_checkpoint_freq: 10000.0
104
+ ]
105
+ is_train: True
106
+
107
+ 2024-06-12 14:31:02,374 INFO: <elastigirl1> (49408-49423) is random initialized by: <rand-0.013>
108
+ 2024-06-12 14:31:02,851 INFO: <elastigirl2> (49424-49439) is random initialized by existing token (woman): 2308
109
+ 2024-06-12 14:31:02,857 INFO: optimizing embedding using lr: 0.001
110
+ 2024-06-12 14:31:03,298 INFO: optimizing text_encoder (48 LoRAs), using lr: 1e-05
111
+ 2024-06-12 14:31:04,187 INFO: optimizing unet (128 LoRAs), using lr: 0.0001
112
+ 2024-06-12 14:31:05,906 INFO: ***** Running training *****
113
+ 2024-06-12 14:31:05,907 INFO: Num examples = 3000
114
+ 2024-06-12 14:31:05,907 INFO: Instantaneous batch size per device = 2
115
+ 2024-06-12 14:31:05,907 INFO: Total train batch size (w. parallel, distributed & accumulation) = 4
116
+ 2024-06-12 14:31:05,907 INFO: Total optimization steps = 750.0
117
+ 2024-06-12 14:31:19,553 INFO: [3101_..][Iter: 10, lr:(9.867e-04,9.867e-06,9.867e-05,)] [eta: 0:15:16] loss: 1.7955e+00 Norm_mean: 3.9338e-01
118
+ 2024-06-12 14:31:30,549 INFO: [3101_..][Iter: 20, lr:(9.733e-04,9.733e-06,9.733e-05,)] [eta: 0:14:15] loss: 3.2856e-01 Norm_mean: 4.0980e-01
119
+ 2024-06-12 14:31:41,738 INFO: [3101_..][Iter: 30, lr:(9.600e-04,9.600e-06,9.600e-05,)] [eta: 0:13:51] loss: 1.8840e+00 Norm_mean: 4.2221e-01
120
+ 2024-06-12 14:31:52,945 INFO: [3101_..][Iter: 40, lr:(9.467e-04,9.467e-06,9.467e-05,)] [eta: 0:13:33] loss: 4.7508e-02 Norm_mean: 4.3213e-01
121
+ 2024-06-12 14:32:04,246 INFO: [3101_..][Iter: 50, lr:(9.333e-04,9.333e-06,9.333e-05,)] [eta: 0:13:19] loss: 6.2937e-01 Norm_mean: 4.4096e-01
122
+ 2024-06-12 14:32:15,557 INFO: [3101_..][Iter: 60, lr:(9.200e-04,9.200e-06,9.200e-05,)] [eta: 0:13:06] loss: 1.7376e-01 Norm_mean: 4.4910e-01
123
+ 2024-06-12 14:32:26,654 INFO: [3101_..][Iter: 70, lr:(9.067e-04,9.067e-06,9.067e-05,)] [eta: 0:12:52] loss: 2.0559e-01 Norm_mean: 4.5643e-01
124
+ 2024-06-12 14:32:37,983 INFO: [3101_..][Iter: 80, lr:(8.933e-04,8.933e-06,8.933e-05,)] [eta: 0:12:40] loss: 2.0426e+00 Norm_mean: 4.6205e-01
125
+ 2024-06-12 14:32:49,171 INFO: [3101_..][Iter: 90, lr:(8.800e-04,8.800e-06,8.800e-05,)] [eta: 0:12:27] loss: 3.2982e-02 Norm_mean: 4.6693e-01
126
+ 2024-06-12 14:33:00,609 INFO: [3101_..][Iter: 100, lr:(8.667e-04,8.667e-06,8.667e-05,)] [eta: 0:12:17] loss: 9.1559e-01 Norm_mean: 4.7130e-01
127
+ 2024-06-12 14:33:12,029 INFO: [3101_..][Iter: 110, lr:(8.533e-04,8.533e-06,8.533e-05,)] [eta: 0:12:06] loss: 3.6256e-01 Norm_mean: 4.7552e-01
128
+ 2024-06-12 14:33:23,515 INFO: [3101_..][Iter: 120, lr:(8.400e-04,8.400e-06,8.400e-05,)] [eta: 0:11:55] loss: 4.2777e-01 Norm_mean: 4.8019e-01
129
+ 2024-06-12 14:33:34,913 INFO: [3101_..][Iter: 130, lr:(8.267e-04,8.267e-06,8.267e-05,)] [eta: 0:11:44] loss: 9.1723e-01 Norm_mean: 4.8464e-01
130
+ 2024-06-12 14:33:46,306 INFO: [3101_..][Iter: 140, lr:(8.133e-04,8.133e-06,8.133e-05,)] [eta: 0:11:32] loss: 1.8349e-01 Norm_mean: 4.8828e-01
131
+ 2024-06-12 14:33:57,753 INFO: [3101_..][Iter: 150, lr:(8.000e-04,8.000e-06,8.000e-05,)] [eta: 0:11:21] loss: 1.7093e+00 Norm_mean: 4.9239e-01
132
+ 2024-06-12 14:34:09,097 INFO: [3101_..][Iter: 160, lr:(7.867e-04,7.867e-06,7.867e-05,)] [eta: 0:11:10] loss: 1.0194e-01 Norm_mean: 4.9714e-01
133
+ 2024-06-12 14:34:20,639 INFO: [3101_..][Iter: 170, lr:(7.733e-04,7.733e-06,7.733e-05,)] [eta: 0:10:59] loss: 6.3093e-01 Norm_mean: 5.0115e-01
134
+ 2024-06-12 14:34:32,182 INFO: [3101_..][Iter: 180, lr:(7.600e-04,7.600e-06,7.600e-05,)] [eta: 0:10:48] loss: 3.2305e-01 Norm_mean: 5.0517e-01
135
+ 2024-06-12 14:34:43,540 INFO: [3101_..][Iter: 190, lr:(7.467e-04,7.467e-06,7.467e-05,)] [eta: 0:10:36] loss: 6.1072e-02 Norm_mean: 5.0899e-01
136
+ 2024-06-12 14:34:54,989 INFO: [3101_..][Iter: 200, lr:(7.333e-04,7.333e-06,7.333e-05,)] [eta: 0:10:25] loss: 1.6823e+00 Norm_mean: 5.1253e-01
137
+ 2024-06-12 14:35:06,479 INFO: [3101_..][Iter: 210, lr:(7.200e-04,7.200e-06,7.200e-05,)] [eta: 0:10:14] loss: 1.1665e+00 Norm_mean: 5.1562e-01
138
+ 2024-06-12 14:35:17,990 INFO: [3101_..][Iter: 220, lr:(7.067e-04,7.067e-06,7.067e-05,)] [eta: 0:10:03] loss: 1.6114e-01 Norm_mean: 5.1809e-01
139
+ 2024-06-12 14:35:29,365 INFO: [3101_..][Iter: 230, lr:(6.933e-04,6.933e-06,6.933e-05,)] [eta: 0:09:51] loss: 6.7085e-02 Norm_mean: 5.2108e-01
140
+ 2024-06-12 14:35:40,883 INFO: [3101_..][Iter: 240, lr:(6.800e-04,6.800e-06,6.800e-05,)] [eta: 0:09:40] loss: 4.5825e-01 Norm_mean: 5.2453e-01
141
+ 2024-06-12 14:35:52,476 INFO: [3101_..][Iter: 250, lr:(6.667e-04,6.667e-06,6.667e-05,)] [eta: 0:09:29] loss: 2.4489e-01 Norm_mean: 5.2843e-01
142
+ 2024-06-12 14:36:04,118 INFO: [3101_..][Iter: 260, lr:(6.533e-04,6.533e-06,6.533e-05,)] [eta: 0:09:18] loss: 2.5160e-02 Norm_mean: 5.3223e-01
143
+ 2024-06-12 14:36:15,767 INFO: [3101_..][Iter: 270, lr:(6.400e-04,6.400e-06,6.400e-05,)] [eta: 0:09:07] loss: 3.6775e-01 Norm_mean: 5.3573e-01
144
+ 2024-06-12 14:36:27,380 INFO: [3101_..][Iter: 280, lr:(6.267e-04,6.267e-06,6.267e-05,)] [eta: 0:08:56] loss: 4.3587e-01 Norm_mean: 5.3877e-01
145
+ 2024-06-12 14:36:38,987 INFO: [3101_..][Iter: 290, lr:(6.133e-04,6.133e-06,6.133e-05,)] [eta: 0:08:45] loss: 3.9278e-01 Norm_mean: 5.4123e-01
146
+ 2024-06-12 14:36:50,508 INFO: [3101_..][Iter: 300, lr:(6.000e-04,6.000e-06,6.000e-05,)] [eta: 0:08:34] loss: 2.6086e-01 Norm_mean: 5.4371e-01
147
+ 2024-06-12 14:37:01,994 INFO: [3101_..][Iter: 310, lr:(5.867e-04,5.867e-06,5.867e-05,)] [eta: 0:08:22] loss: 1.0341e+00 Norm_mean: 5.4617e-01
148
+ 2024-06-12 14:37:13,704 INFO: [3101_..][Iter: 320, lr:(5.733e-04,5.733e-06,5.733e-05,)] [eta: 0:08:11] loss: 1.1104e+00 Norm_mean: 5.4801e-01
149
+ 2024-06-12 14:37:25,242 INFO: [3101_..][Iter: 330, lr:(5.600e-04,5.600e-06,5.600e-05,)] [eta: 0:08:00] loss: 4.4960e-01 Norm_mean: 5.4974e-01
150
+ 2024-06-12 14:37:36,784 INFO: [3101_..][Iter: 340, lr:(5.467e-04,5.467e-06,5.467e-05,)] [eta: 0:07:48] loss: 5.2360e-01 Norm_mean: 5.5004e-01
151
+ 2024-06-12 14:37:48,603 INFO: [3101_..][Iter: 350, lr:(5.333e-04,5.333e-06,5.333e-05,)] [eta: 0:07:37] loss: 8.7654e-01 Norm_mean: 5.5004e-01
152
+ 2024-06-12 14:38:00,590 INFO: [3101_..][Iter: 360, lr:(5.200e-04,5.200e-06,5.200e-05,)] [eta: 0:07:26] loss: 2.5864e-01 Norm_mean: 5.5004e-01
153
+ 2024-06-12 14:38:12,451 INFO: [3101_..][Iter: 370, lr:(5.067e-04,5.067e-06,5.067e-05,)] [eta: 0:07:15] loss: 1.0777e+00 Norm_mean: 5.5004e-01
154
+ 2024-06-12 14:38:24,111 INFO: [3101_..][Iter: 380, lr:(4.933e-04,4.933e-06,4.933e-05,)] [eta: 0:07:04] loss: 3.4526e-01 Norm_mean: 5.5004e-01
155
+ 2024-06-12 14:38:35,688 INFO: [3101_..][Iter: 390, lr:(4.800e-04,4.800e-06,4.800e-05,)] [eta: 0:06:52] loss: 5.8209e-01 Norm_mean: 5.5004e-01
156
+ 2024-06-12 14:38:47,263 INFO: [3101_..][Iter: 400, lr:(4.667e-04,4.667e-06,4.667e-05,)] [eta: 0:06:41] loss: 1.0728e+00 Norm_mean: 5.5004e-01
157
+ 2024-06-12 14:38:58,981 INFO: [3101_..][Iter: 410, lr:(4.533e-04,4.533e-06,4.533e-05,)] [eta: 0:06:30] loss: 2.2969e-01 Norm_mean: 5.5004e-01
158
+ 2024-06-12 14:39:10,708 INFO: [3101_..][Iter: 420, lr:(4.400e-04,4.400e-06,4.400e-05,)] [eta: 0:06:18] loss: 2.2180e-01 Norm_mean: 5.5004e-01
159
+ 2024-06-12 14:39:22,502 INFO: [3101_..][Iter: 430, lr:(4.267e-04,4.267e-06,4.267e-05,)] [eta: 0:06:07] loss: 5.8771e-01 Norm_mean: 5.5004e-01
160
+ 2024-06-12 14:39:34,180 INFO: [3101_..][Iter: 440, lr:(4.133e-04,4.133e-06,4.133e-05,)] [eta: 0:05:56] loss: 1.2351e+00 Norm_mean: 5.5004e-01
161
+ 2024-06-12 14:39:45,659 INFO: [3101_..][Iter: 450, lr:(4.000e-04,4.000e-06,4.000e-05,)] [eta: 0:05:44] loss: 2.2661e-01 Norm_mean: 5.5004e-01
162
+ 2024-06-12 14:39:57,067 INFO: [3101_..][Iter: 460, lr:(3.867e-04,3.867e-06,3.867e-05,)] [eta: 0:05:32] loss: 7.9299e-01 Norm_mean: 5.5004e-01
163
+ 2024-06-12 14:40:08,507 INFO: [3101_..][Iter: 470, lr:(3.733e-04,3.733e-06,3.733e-05,)] [eta: 0:05:21] loss: 1.9985e+00 Norm_mean: 5.5004e-01
164
+ 2024-06-12 14:40:19,914 INFO: [3101_..][Iter: 480, lr:(3.600e-04,3.600e-06,3.600e-05,)] [eta: 0:05:09] loss: 2.2811e-01 Norm_mean: 5.5004e-01
165
+ 2024-06-12 14:40:31,475 INFO: [3101_..][Iter: 490, lr:(3.467e-04,3.467e-06,3.467e-05,)] [eta: 0:04:58] loss: 3.1418e-01 Norm_mean: 5.5004e-01
166
+ 2024-06-12 14:40:42,928 INFO: [3101_..][Iter: 500, lr:(3.333e-04,3.333e-06,3.333e-05,)] [eta: 0:04:46] loss: 8.7115e-02 Norm_mean: 5.5004e-01
167
+ 2024-06-12 14:40:54,443 INFO: [3101_..][Iter: 510, lr:(3.200e-04,3.200e-06,3.200e-05,)] [eta: 0:04:35] loss: 1.6109e+00 Norm_mean: 5.5004e-01
168
+ 2024-06-12 14:41:05,922 INFO: [3101_..][Iter: 520, lr:(3.067e-04,3.067e-06,3.067e-05,)] [eta: 0:04:23] loss: 9.1631e-01 Norm_mean: 5.5004e-01
169
+ 2024-06-12 14:41:17,446 INFO: [3101_..][Iter: 530, lr:(2.933e-04,2.933e-06,2.933e-05,)] [eta: 0:04:12] loss: 3.2322e-01 Norm_mean: 5.5004e-01
170
+ 2024-06-12 14:41:28,961 INFO: [3101_..][Iter: 540, lr:(2.800e-04,2.800e-06,2.800e-05,)] [eta: 0:04:00] loss: 6.9535e-01 Norm_mean: 5.5004e-01
171
+ 2024-06-12 14:41:41,194 INFO: [3101_..][Iter: 550, lr:(2.667e-04,2.667e-06,2.667e-05,)] [eta: 0:03:49] loss: 4.1668e-01 Norm_mean: 5.5004e-01
172
+ 2024-06-12 14:41:52,861 INFO: [3101_..][Iter: 560, lr:(2.533e-04,2.533e-06,2.533e-05,)] [eta: 0:03:37] loss: 5.8133e-02 Norm_mean: 5.5004e-01
173
+ 2024-06-12 14:42:04,467 INFO: [3101_..][Iter: 570, lr:(2.400e-04,2.400e-06,2.400e-05,)] [eta: 0:03:26] loss: 2.3583e-01 Norm_mean: 5.5004e-01
174
+ 2024-06-12 14:42:16,237 INFO: [3101_..][Iter: 580, lr:(2.267e-04,2.267e-06,2.267e-05,)] [eta: 0:03:14] loss: 1.9564e-01 Norm_mean: 5.5004e-01
175
+ 2024-06-12 14:42:28,212 INFO: [3101_..][Iter: 590, lr:(2.133e-04,2.133e-06,2.133e-05,)] [eta: 0:03:03] loss: 2.5047e-01 Norm_mean: 5.5004e-01
176
+ 2024-06-12 14:42:40,010 INFO: [3101_..][Iter: 600, lr:(2.000e-04,2.000e-06,2.000e-05,)] [eta: 0:02:52] loss: 1.4400e+00 Norm_mean: 5.5004e-01
177
+ 2024-06-12 14:42:51,497 INFO: [3101_..][Iter: 610, lr:(1.867e-04,1.867e-06,1.867e-05,)] [eta: 0:02:40] loss: 3.0696e-01 Norm_mean: 5.5004e-01
178
+ 2024-06-12 14:43:03,024 INFO: [3101_..][Iter: 620, lr:(1.733e-04,1.733e-06,1.733e-05,)] [eta: 0:02:28] loss: 6.6517e-01 Norm_mean: 5.5004e-01
179
+ 2024-06-12 14:43:14,606 INFO: [3101_..][Iter: 630, lr:(1.600e-04,1.600e-06,1.600e-05,)] [eta: 0:02:17] loss: 4.7749e-02 Norm_mean: 5.5004e-01
180
+ 2024-06-12 14:43:26,208 INFO: [3101_..][Iter: 640, lr:(1.467e-04,1.467e-06,1.467e-05,)] [eta: 0:02:05] loss: 1.9192e-01 Norm_mean: 5.5004e-01
181
+ 2024-06-12 14:43:37,659 INFO: [3101_..][Iter: 650, lr:(1.333e-04,1.333e-06,1.333e-05,)] [eta: 0:01:54] loss: 1.1150e+00 Norm_mean: 5.5004e-01
182
+ 2024-06-12 14:43:49,029 INFO: [3101_..][Iter: 660, lr:(1.200e-04,1.200e-06,1.200e-05,)] [eta: 0:01:42] loss: 3.4967e-01 Norm_mean: 5.5004e-01
183
+ 2024-06-12 14:44:00,469 INFO: [3101_..][Iter: 670, lr:(1.067e-04,1.067e-06,1.067e-05,)] [eta: 0:01:31] loss: 9.9133e-02 Norm_mean: 5.5004e-01
184
+ 2024-06-12 14:44:11,888 INFO: [3101_..][Iter: 680, lr:(9.333e-05,9.333e-07,9.333e-06,)] [eta: 0:01:19] loss: 3.4823e-01 Norm_mean: 5.5004e-01
185
+ 2024-06-12 14:44:23,338 INFO: [3101_..][Iter: 690, lr:(8.000e-05,8.000e-07,8.000e-06,)] [eta: 0:01:08] loss: 4.2073e-01 Norm_mean: 5.5004e-01
186
+ 2024-06-12 14:44:34,740 INFO: [3101_..][Iter: 700, lr:(6.667e-05,6.667e-07,6.667e-06,)] [eta: 0:00:56] loss: 2.1763e-01 Norm_mean: 5.5004e-01
187
+ 2024-06-12 14:44:46,142 INFO: [3101_..][Iter: 710, lr:(5.333e-05,5.333e-07,5.333e-06,)] [eta: 0:00:44] loss: 1.7516e+00 Norm_mean: 5.5004e-01
188
+ 2024-06-12 14:44:57,640 INFO: [3101_..][Iter: 720, lr:(4.000e-05,4.000e-07,4.000e-06,)] [eta: 0:00:33] loss: 4.5513e-01 Norm_mean: 5.5004e-01
189
+ 2024-06-12 14:45:09,077 INFO: [3101_..][Iter: 730, lr:(2.667e-05,2.667e-07,2.667e-06,)] [eta: 0:00:21] loss: 5.1251e-01 Norm_mean: 5.5004e-01
190
+ 2024-06-12 14:45:20,638 INFO: [3101_..][Iter: 740, lr:(1.333e-05,1.333e-07,1.333e-06,)] [eta: 0:00:10] loss: 7.4665e-01 Norm_mean: 5.5004e-01
191
+ 2024-06-12 14:45:32,125 INFO: [3101_..][Iter: 750, lr:(0.000e+00,0.000e+00,0.000e+00,)] [eta: -1 day, 23:59:59] loss: 2.6865e-01 Norm_mean: 5.5004e-01
192
+ 2024-06-12 14:45:32,274 INFO: Save state to /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho/models/edlora_model-latest.pth