upload Elastigirl weights
Browse files
experiments/single-concept/elastigirl/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
experiments/single-concept/elastigirl/3101_elastigirl_ortho.yml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GENERATE TIME: Wed Jun 12 14:30:54 2024
|
2 |
+
# CMD:
|
3 |
+
# train_edlora.py -opt single-concept/train_configs/3101_elastigirl_ortho.yml
|
4 |
+
|
5 |
+
name: 3101_elastigirl_ortho
|
6 |
+
manual_seed: 3101
|
7 |
+
mixed_precision: fp16
|
8 |
+
gradient_accumulation_steps: 1
|
9 |
+
datasets:
|
10 |
+
train:
|
11 |
+
name: LoraDataset
|
12 |
+
concept_list: single-concept/data_configs/elastigirl.json
|
13 |
+
use_caption: true
|
14 |
+
use_mask: true
|
15 |
+
instance_transform:
|
16 |
+
- type: HumanResizeCropFinalV3
|
17 |
+
size: 512
|
18 |
+
crop_p: 0.5
|
19 |
+
- type: ToTensor
|
20 |
+
- type: Normalize
|
21 |
+
mean:
|
22 |
+
- 0.5
|
23 |
+
std:
|
24 |
+
- 0.5
|
25 |
+
- type: ShuffleCaption
|
26 |
+
keep_token_num: 1
|
27 |
+
- type: EnhanceText
|
28 |
+
enhance_type: human
|
29 |
+
replace_mapping:
|
30 |
+
<TOK>: <elastigirl1> <elastigirl2>
|
31 |
+
batch_size_per_gpu: 2
|
32 |
+
dataset_enlarge_ratio: 500
|
33 |
+
val_vis:
|
34 |
+
name: PromptDataset
|
35 |
+
prompts: single-concept/validation_prompts/characters/test_woman.txt
|
36 |
+
num_samples_per_prompt: 8
|
37 |
+
latent_size:
|
38 |
+
- 4
|
39 |
+
- 64
|
40 |
+
- 64
|
41 |
+
replace_mapping:
|
42 |
+
<TOK>: <elastigirl1> <elastigirl2>
|
43 |
+
batch_size_per_gpu: 4
|
44 |
+
models:
|
45 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
46 |
+
enable_edlora: true
|
47 |
+
finetune_cfg:
|
48 |
+
text_embedding:
|
49 |
+
enable_tuning: true
|
50 |
+
lr: 0.001
|
51 |
+
text_encoder:
|
52 |
+
enable_tuning: true
|
53 |
+
lora_cfg:
|
54 |
+
rank: 5
|
55 |
+
alpha: 1.0
|
56 |
+
where: CLIPAttention
|
57 |
+
lr: 1.0e-05
|
58 |
+
unet:
|
59 |
+
enable_tuning: true
|
60 |
+
lora_cfg:
|
61 |
+
rank: 5
|
62 |
+
alpha: 1.0
|
63 |
+
where: Attention
|
64 |
+
lr: 0.0001
|
65 |
+
new_concept_token: <elastigirl1>+<elastigirl2>
|
66 |
+
initializer_token: <rand-0.013>+woman
|
67 |
+
noise_offset: 0.01
|
68 |
+
attn_reg_weight: 0.01
|
69 |
+
reg_full_identity: false
|
70 |
+
use_mask_loss: true
|
71 |
+
gradient_checkpoint: false
|
72 |
+
enable_xformers: true
|
73 |
+
path:
|
74 |
+
pretrain_network: null
|
75 |
+
train:
|
76 |
+
optim_g:
|
77 |
+
type: AdamW
|
78 |
+
lr: 0.0
|
79 |
+
weight_decay: 0.01
|
80 |
+
betas:
|
81 |
+
- 0.9
|
82 |
+
- 0.999
|
83 |
+
unet_kv_drop_rate: 0
|
84 |
+
scheduler: linear
|
85 |
+
emb_norm_threshold: 0.55
|
86 |
+
val:
|
87 |
+
val_during_save: false
|
88 |
+
compose_visualize: false
|
89 |
+
alpha_list:
|
90 |
+
- 0
|
91 |
+
- 0.7
|
92 |
+
- 1.0
|
93 |
+
sample:
|
94 |
+
num_inference_steps: 50
|
95 |
+
guidance_scale: 7.5
|
96 |
+
logger:
|
97 |
+
print_freq: 10
|
98 |
+
save_checkpoint_freq: 10000.0
|
experiments/single-concept/elastigirl/models/edlora_model-latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:574ae8359510362e6d93664c2478e574fa1c3ae25d3e4d86f986d60093589fea
|
3 |
+
size 35173046
|
experiments/single-concept/elastigirl/train_3101_elastigirl_ortho_20240612_143054.log
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-06-12 14:30:54,522 INFO: Distributed environment: MULTI_GPU Backend: nccl
|
2 |
+
Num processes: 2
|
3 |
+
Process index: 0
|
4 |
+
Local process index: 0
|
5 |
+
Device: cuda:0
|
6 |
+
|
7 |
+
Mixed precision type: fp16
|
8 |
+
|
9 |
+
2024-06-12 14:30:54,523 INFO:
|
10 |
+
name: 3101_elastigirl_ortho
|
11 |
+
manual_seed: 3101
|
12 |
+
mixed_precision: fp16
|
13 |
+
gradient_accumulation_steps: 1
|
14 |
+
datasets:[
|
15 |
+
train:[
|
16 |
+
name: LoraDataset
|
17 |
+
concept_list: single-concept/data_configs/elastigirl.json
|
18 |
+
use_caption: True
|
19 |
+
use_mask: True
|
20 |
+
instance_transform: [{'type': 'HumanResizeCropFinalV3', 'size': 512, 'crop_p': 0.5}, {'type': 'ToTensor'}, {'type': 'Normalize', 'mean': [0.5], 'std': [0.5]}, {'type': 'ShuffleCaption', 'keep_token_num': 1}, {'type': 'EnhanceText', 'enhance_type': 'human'}]
|
21 |
+
replace_mapping:[
|
22 |
+
<TOK>: <elastigirl1> <elastigirl2>
|
23 |
+
]
|
24 |
+
batch_size_per_gpu: 2
|
25 |
+
dataset_enlarge_ratio: 500
|
26 |
+
]
|
27 |
+
val_vis:[
|
28 |
+
name: PromptDataset
|
29 |
+
prompts: single-concept/validation_prompts/characters/test_woman.txt
|
30 |
+
num_samples_per_prompt: 8
|
31 |
+
latent_size: [4, 64, 64]
|
32 |
+
replace_mapping:[
|
33 |
+
<TOK>: <elastigirl1> <elastigirl2>
|
34 |
+
]
|
35 |
+
batch_size_per_gpu: 4
|
36 |
+
]
|
37 |
+
]
|
38 |
+
models:[
|
39 |
+
pretrained_path: nitrosocke/mo-di-diffusion
|
40 |
+
enable_edlora: True
|
41 |
+
finetune_cfg:[
|
42 |
+
text_embedding:[
|
43 |
+
enable_tuning: True
|
44 |
+
lr: 0.001
|
45 |
+
]
|
46 |
+
text_encoder:[
|
47 |
+
enable_tuning: True
|
48 |
+
lora_cfg:[
|
49 |
+
rank: 5
|
50 |
+
alpha: 1.0
|
51 |
+
where: CLIPAttention
|
52 |
+
]
|
53 |
+
lr: 1e-05
|
54 |
+
]
|
55 |
+
unet:[
|
56 |
+
enable_tuning: True
|
57 |
+
lora_cfg:[
|
58 |
+
rank: 5
|
59 |
+
alpha: 1.0
|
60 |
+
where: Attention
|
61 |
+
]
|
62 |
+
lr: 0.0001
|
63 |
+
]
|
64 |
+
]
|
65 |
+
new_concept_token: <elastigirl1>+<elastigirl2>
|
66 |
+
initializer_token: <rand-0.013>+woman
|
67 |
+
noise_offset: 0.01
|
68 |
+
attn_reg_weight: 0.01
|
69 |
+
reg_full_identity: False
|
70 |
+
use_mask_loss: True
|
71 |
+
gradient_checkpoint: False
|
72 |
+
enable_xformers: True
|
73 |
+
]
|
74 |
+
path:[
|
75 |
+
pretrain_network: None
|
76 |
+
experiments_root: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho
|
77 |
+
models: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho/models
|
78 |
+
log: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho
|
79 |
+
visualization: /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho/visualization
|
80 |
+
]
|
81 |
+
train:[
|
82 |
+
optim_g:[
|
83 |
+
type: AdamW
|
84 |
+
lr: 0.0
|
85 |
+
weight_decay: 0.01
|
86 |
+
betas: [0.9, 0.999]
|
87 |
+
]
|
88 |
+
unet_kv_drop_rate: 0
|
89 |
+
scheduler: linear
|
90 |
+
emb_norm_threshold: 0.55
|
91 |
+
]
|
92 |
+
val:[
|
93 |
+
val_during_save: False
|
94 |
+
compose_visualize: False
|
95 |
+
alpha_list: [0, 0.7, 1.0]
|
96 |
+
sample:[
|
97 |
+
num_inference_steps: 50
|
98 |
+
guidance_scale: 7.5
|
99 |
+
]
|
100 |
+
]
|
101 |
+
logger:[
|
102 |
+
print_freq: 10
|
103 |
+
save_checkpoint_freq: 10000.0
|
104 |
+
]
|
105 |
+
is_train: True
|
106 |
+
|
107 |
+
2024-06-12 14:31:02,374 INFO: <elastigirl1> (49408-49423) is random initialized by: <rand-0.013>
|
108 |
+
2024-06-12 14:31:02,851 INFO: <elastigirl2> (49424-49439) is random initialized by existing token (woman): 2308
|
109 |
+
2024-06-12 14:31:02,857 INFO: optimizing embedding using lr: 0.001
|
110 |
+
2024-06-12 14:31:03,298 INFO: optimizing text_encoder (48 LoRAs), using lr: 1e-05
|
111 |
+
2024-06-12 14:31:04,187 INFO: optimizing unet (128 LoRAs), using lr: 0.0001
|
112 |
+
2024-06-12 14:31:05,906 INFO: ***** Running training *****
|
113 |
+
2024-06-12 14:31:05,907 INFO: Num examples = 3000
|
114 |
+
2024-06-12 14:31:05,907 INFO: Instantaneous batch size per device = 2
|
115 |
+
2024-06-12 14:31:05,907 INFO: Total train batch size (w. parallel, distributed & accumulation) = 4
|
116 |
+
2024-06-12 14:31:05,907 INFO: Total optimization steps = 750.0
|
117 |
+
2024-06-12 14:31:19,553 INFO: [3101_..][Iter: 10, lr:(9.867e-04,9.867e-06,9.867e-05,)] [eta: 0:15:16] loss: 1.7955e+00 Norm_mean: 3.9338e-01
|
118 |
+
2024-06-12 14:31:30,549 INFO: [3101_..][Iter: 20, lr:(9.733e-04,9.733e-06,9.733e-05,)] [eta: 0:14:15] loss: 3.2856e-01 Norm_mean: 4.0980e-01
|
119 |
+
2024-06-12 14:31:41,738 INFO: [3101_..][Iter: 30, lr:(9.600e-04,9.600e-06,9.600e-05,)] [eta: 0:13:51] loss: 1.8840e+00 Norm_mean: 4.2221e-01
|
120 |
+
2024-06-12 14:31:52,945 INFO: [3101_..][Iter: 40, lr:(9.467e-04,9.467e-06,9.467e-05,)] [eta: 0:13:33] loss: 4.7508e-02 Norm_mean: 4.3213e-01
|
121 |
+
2024-06-12 14:32:04,246 INFO: [3101_..][Iter: 50, lr:(9.333e-04,9.333e-06,9.333e-05,)] [eta: 0:13:19] loss: 6.2937e-01 Norm_mean: 4.4096e-01
|
122 |
+
2024-06-12 14:32:15,557 INFO: [3101_..][Iter: 60, lr:(9.200e-04,9.200e-06,9.200e-05,)] [eta: 0:13:06] loss: 1.7376e-01 Norm_mean: 4.4910e-01
|
123 |
+
2024-06-12 14:32:26,654 INFO: [3101_..][Iter: 70, lr:(9.067e-04,9.067e-06,9.067e-05,)] [eta: 0:12:52] loss: 2.0559e-01 Norm_mean: 4.5643e-01
|
124 |
+
2024-06-12 14:32:37,983 INFO: [3101_..][Iter: 80, lr:(8.933e-04,8.933e-06,8.933e-05,)] [eta: 0:12:40] loss: 2.0426e+00 Norm_mean: 4.6205e-01
|
125 |
+
2024-06-12 14:32:49,171 INFO: [3101_..][Iter: 90, lr:(8.800e-04,8.800e-06,8.800e-05,)] [eta: 0:12:27] loss: 3.2982e-02 Norm_mean: 4.6693e-01
|
126 |
+
2024-06-12 14:33:00,609 INFO: [3101_..][Iter: 100, lr:(8.667e-04,8.667e-06,8.667e-05,)] [eta: 0:12:17] loss: 9.1559e-01 Norm_mean: 4.7130e-01
|
127 |
+
2024-06-12 14:33:12,029 INFO: [3101_..][Iter: 110, lr:(8.533e-04,8.533e-06,8.533e-05,)] [eta: 0:12:06] loss: 3.6256e-01 Norm_mean: 4.7552e-01
|
128 |
+
2024-06-12 14:33:23,515 INFO: [3101_..][Iter: 120, lr:(8.400e-04,8.400e-06,8.400e-05,)] [eta: 0:11:55] loss: 4.2777e-01 Norm_mean: 4.8019e-01
|
129 |
+
2024-06-12 14:33:34,913 INFO: [3101_..][Iter: 130, lr:(8.267e-04,8.267e-06,8.267e-05,)] [eta: 0:11:44] loss: 9.1723e-01 Norm_mean: 4.8464e-01
|
130 |
+
2024-06-12 14:33:46,306 INFO: [3101_..][Iter: 140, lr:(8.133e-04,8.133e-06,8.133e-05,)] [eta: 0:11:32] loss: 1.8349e-01 Norm_mean: 4.8828e-01
|
131 |
+
2024-06-12 14:33:57,753 INFO: [3101_..][Iter: 150, lr:(8.000e-04,8.000e-06,8.000e-05,)] [eta: 0:11:21] loss: 1.7093e+00 Norm_mean: 4.9239e-01
|
132 |
+
2024-06-12 14:34:09,097 INFO: [3101_..][Iter: 160, lr:(7.867e-04,7.867e-06,7.867e-05,)] [eta: 0:11:10] loss: 1.0194e-01 Norm_mean: 4.9714e-01
|
133 |
+
2024-06-12 14:34:20,639 INFO: [3101_..][Iter: 170, lr:(7.733e-04,7.733e-06,7.733e-05,)] [eta: 0:10:59] loss: 6.3093e-01 Norm_mean: 5.0115e-01
|
134 |
+
2024-06-12 14:34:32,182 INFO: [3101_..][Iter: 180, lr:(7.600e-04,7.600e-06,7.600e-05,)] [eta: 0:10:48] loss: 3.2305e-01 Norm_mean: 5.0517e-01
|
135 |
+
2024-06-12 14:34:43,540 INFO: [3101_..][Iter: 190, lr:(7.467e-04,7.467e-06,7.467e-05,)] [eta: 0:10:36] loss: 6.1072e-02 Norm_mean: 5.0899e-01
|
136 |
+
2024-06-12 14:34:54,989 INFO: [3101_..][Iter: 200, lr:(7.333e-04,7.333e-06,7.333e-05,)] [eta: 0:10:25] loss: 1.6823e+00 Norm_mean: 5.1253e-01
|
137 |
+
2024-06-12 14:35:06,479 INFO: [3101_..][Iter: 210, lr:(7.200e-04,7.200e-06,7.200e-05,)] [eta: 0:10:14] loss: 1.1665e+00 Norm_mean: 5.1562e-01
|
138 |
+
2024-06-12 14:35:17,990 INFO: [3101_..][Iter: 220, lr:(7.067e-04,7.067e-06,7.067e-05,)] [eta: 0:10:03] loss: 1.6114e-01 Norm_mean: 5.1809e-01
|
139 |
+
2024-06-12 14:35:29,365 INFO: [3101_..][Iter: 230, lr:(6.933e-04,6.933e-06,6.933e-05,)] [eta: 0:09:51] loss: 6.7085e-02 Norm_mean: 5.2108e-01
|
140 |
+
2024-06-12 14:35:40,883 INFO: [3101_..][Iter: 240, lr:(6.800e-04,6.800e-06,6.800e-05,)] [eta: 0:09:40] loss: 4.5825e-01 Norm_mean: 5.2453e-01
|
141 |
+
2024-06-12 14:35:52,476 INFO: [3101_..][Iter: 250, lr:(6.667e-04,6.667e-06,6.667e-05,)] [eta: 0:09:29] loss: 2.4489e-01 Norm_mean: 5.2843e-01
|
142 |
+
2024-06-12 14:36:04,118 INFO: [3101_..][Iter: 260, lr:(6.533e-04,6.533e-06,6.533e-05,)] [eta: 0:09:18] loss: 2.5160e-02 Norm_mean: 5.3223e-01
|
143 |
+
2024-06-12 14:36:15,767 INFO: [3101_..][Iter: 270, lr:(6.400e-04,6.400e-06,6.400e-05,)] [eta: 0:09:07] loss: 3.6775e-01 Norm_mean: 5.3573e-01
|
144 |
+
2024-06-12 14:36:27,380 INFO: [3101_..][Iter: 280, lr:(6.267e-04,6.267e-06,6.267e-05,)] [eta: 0:08:56] loss: 4.3587e-01 Norm_mean: 5.3877e-01
|
145 |
+
2024-06-12 14:36:38,987 INFO: [3101_..][Iter: 290, lr:(6.133e-04,6.133e-06,6.133e-05,)] [eta: 0:08:45] loss: 3.9278e-01 Norm_mean: 5.4123e-01
|
146 |
+
2024-06-12 14:36:50,508 INFO: [3101_..][Iter: 300, lr:(6.000e-04,6.000e-06,6.000e-05,)] [eta: 0:08:34] loss: 2.6086e-01 Norm_mean: 5.4371e-01
|
147 |
+
2024-06-12 14:37:01,994 INFO: [3101_..][Iter: 310, lr:(5.867e-04,5.867e-06,5.867e-05,)] [eta: 0:08:22] loss: 1.0341e+00 Norm_mean: 5.4617e-01
|
148 |
+
2024-06-12 14:37:13,704 INFO: [3101_..][Iter: 320, lr:(5.733e-04,5.733e-06,5.733e-05,)] [eta: 0:08:11] loss: 1.1104e+00 Norm_mean: 5.4801e-01
|
149 |
+
2024-06-12 14:37:25,242 INFO: [3101_..][Iter: 330, lr:(5.600e-04,5.600e-06,5.600e-05,)] [eta: 0:08:00] loss: 4.4960e-01 Norm_mean: 5.4974e-01
|
150 |
+
2024-06-12 14:37:36,784 INFO: [3101_..][Iter: 340, lr:(5.467e-04,5.467e-06,5.467e-05,)] [eta: 0:07:48] loss: 5.2360e-01 Norm_mean: 5.5004e-01
|
151 |
+
2024-06-12 14:37:48,603 INFO: [3101_..][Iter: 350, lr:(5.333e-04,5.333e-06,5.333e-05,)] [eta: 0:07:37] loss: 8.7654e-01 Norm_mean: 5.5004e-01
|
152 |
+
2024-06-12 14:38:00,590 INFO: [3101_..][Iter: 360, lr:(5.200e-04,5.200e-06,5.200e-05,)] [eta: 0:07:26] loss: 2.5864e-01 Norm_mean: 5.5004e-01
|
153 |
+
2024-06-12 14:38:12,451 INFO: [3101_..][Iter: 370, lr:(5.067e-04,5.067e-06,5.067e-05,)] [eta: 0:07:15] loss: 1.0777e+00 Norm_mean: 5.5004e-01
|
154 |
+
2024-06-12 14:38:24,111 INFO: [3101_..][Iter: 380, lr:(4.933e-04,4.933e-06,4.933e-05,)] [eta: 0:07:04] loss: 3.4526e-01 Norm_mean: 5.5004e-01
|
155 |
+
2024-06-12 14:38:35,688 INFO: [3101_..][Iter: 390, lr:(4.800e-04,4.800e-06,4.800e-05,)] [eta: 0:06:52] loss: 5.8209e-01 Norm_mean: 5.5004e-01
|
156 |
+
2024-06-12 14:38:47,263 INFO: [3101_..][Iter: 400, lr:(4.667e-04,4.667e-06,4.667e-05,)] [eta: 0:06:41] loss: 1.0728e+00 Norm_mean: 5.5004e-01
|
157 |
+
2024-06-12 14:38:58,981 INFO: [3101_..][Iter: 410, lr:(4.533e-04,4.533e-06,4.533e-05,)] [eta: 0:06:30] loss: 2.2969e-01 Norm_mean: 5.5004e-01
|
158 |
+
2024-06-12 14:39:10,708 INFO: [3101_..][Iter: 420, lr:(4.400e-04,4.400e-06,4.400e-05,)] [eta: 0:06:18] loss: 2.2180e-01 Norm_mean: 5.5004e-01
|
159 |
+
2024-06-12 14:39:22,502 INFO: [3101_..][Iter: 430, lr:(4.267e-04,4.267e-06,4.267e-05,)] [eta: 0:06:07] loss: 5.8771e-01 Norm_mean: 5.5004e-01
|
160 |
+
2024-06-12 14:39:34,180 INFO: [3101_..][Iter: 440, lr:(4.133e-04,4.133e-06,4.133e-05,)] [eta: 0:05:56] loss: 1.2351e+00 Norm_mean: 5.5004e-01
|
161 |
+
2024-06-12 14:39:45,659 INFO: [3101_..][Iter: 450, lr:(4.000e-04,4.000e-06,4.000e-05,)] [eta: 0:05:44] loss: 2.2661e-01 Norm_mean: 5.5004e-01
|
162 |
+
2024-06-12 14:39:57,067 INFO: [3101_..][Iter: 460, lr:(3.867e-04,3.867e-06,3.867e-05,)] [eta: 0:05:32] loss: 7.9299e-01 Norm_mean: 5.5004e-01
|
163 |
+
2024-06-12 14:40:08,507 INFO: [3101_..][Iter: 470, lr:(3.733e-04,3.733e-06,3.733e-05,)] [eta: 0:05:21] loss: 1.9985e+00 Norm_mean: 5.5004e-01
|
164 |
+
2024-06-12 14:40:19,914 INFO: [3101_..][Iter: 480, lr:(3.600e-04,3.600e-06,3.600e-05,)] [eta: 0:05:09] loss: 2.2811e-01 Norm_mean: 5.5004e-01
|
165 |
+
2024-06-12 14:40:31,475 INFO: [3101_..][Iter: 490, lr:(3.467e-04,3.467e-06,3.467e-05,)] [eta: 0:04:58] loss: 3.1418e-01 Norm_mean: 5.5004e-01
|
166 |
+
2024-06-12 14:40:42,928 INFO: [3101_..][Iter: 500, lr:(3.333e-04,3.333e-06,3.333e-05,)] [eta: 0:04:46] loss: 8.7115e-02 Norm_mean: 5.5004e-01
|
167 |
+
2024-06-12 14:40:54,443 INFO: [3101_..][Iter: 510, lr:(3.200e-04,3.200e-06,3.200e-05,)] [eta: 0:04:35] loss: 1.6109e+00 Norm_mean: 5.5004e-01
|
168 |
+
2024-06-12 14:41:05,922 INFO: [3101_..][Iter: 520, lr:(3.067e-04,3.067e-06,3.067e-05,)] [eta: 0:04:23] loss: 9.1631e-01 Norm_mean: 5.5004e-01
|
169 |
+
2024-06-12 14:41:17,446 INFO: [3101_..][Iter: 530, lr:(2.933e-04,2.933e-06,2.933e-05,)] [eta: 0:04:12] loss: 3.2322e-01 Norm_mean: 5.5004e-01
|
170 |
+
2024-06-12 14:41:28,961 INFO: [3101_..][Iter: 540, lr:(2.800e-04,2.800e-06,2.800e-05,)] [eta: 0:04:00] loss: 6.9535e-01 Norm_mean: 5.5004e-01
|
171 |
+
2024-06-12 14:41:41,194 INFO: [3101_..][Iter: 550, lr:(2.667e-04,2.667e-06,2.667e-05,)] [eta: 0:03:49] loss: 4.1668e-01 Norm_mean: 5.5004e-01
|
172 |
+
2024-06-12 14:41:52,861 INFO: [3101_..][Iter: 560, lr:(2.533e-04,2.533e-06,2.533e-05,)] [eta: 0:03:37] loss: 5.8133e-02 Norm_mean: 5.5004e-01
|
173 |
+
2024-06-12 14:42:04,467 INFO: [3101_..][Iter: 570, lr:(2.400e-04,2.400e-06,2.400e-05,)] [eta: 0:03:26] loss: 2.3583e-01 Norm_mean: 5.5004e-01
|
174 |
+
2024-06-12 14:42:16,237 INFO: [3101_..][Iter: 580, lr:(2.267e-04,2.267e-06,2.267e-05,)] [eta: 0:03:14] loss: 1.9564e-01 Norm_mean: 5.5004e-01
|
175 |
+
2024-06-12 14:42:28,212 INFO: [3101_..][Iter: 590, lr:(2.133e-04,2.133e-06,2.133e-05,)] [eta: 0:03:03] loss: 2.5047e-01 Norm_mean: 5.5004e-01
|
176 |
+
2024-06-12 14:42:40,010 INFO: [3101_..][Iter: 600, lr:(2.000e-04,2.000e-06,2.000e-05,)] [eta: 0:02:52] loss: 1.4400e+00 Norm_mean: 5.5004e-01
|
177 |
+
2024-06-12 14:42:51,497 INFO: [3101_..][Iter: 610, lr:(1.867e-04,1.867e-06,1.867e-05,)] [eta: 0:02:40] loss: 3.0696e-01 Norm_mean: 5.5004e-01
|
178 |
+
2024-06-12 14:43:03,024 INFO: [3101_..][Iter: 620, lr:(1.733e-04,1.733e-06,1.733e-05,)] [eta: 0:02:28] loss: 6.6517e-01 Norm_mean: 5.5004e-01
|
179 |
+
2024-06-12 14:43:14,606 INFO: [3101_..][Iter: 630, lr:(1.600e-04,1.600e-06,1.600e-05,)] [eta: 0:02:17] loss: 4.7749e-02 Norm_mean: 5.5004e-01
|
180 |
+
2024-06-12 14:43:26,208 INFO: [3101_..][Iter: 640, lr:(1.467e-04,1.467e-06,1.467e-05,)] [eta: 0:02:05] loss: 1.9192e-01 Norm_mean: 5.5004e-01
|
181 |
+
2024-06-12 14:43:37,659 INFO: [3101_..][Iter: 650, lr:(1.333e-04,1.333e-06,1.333e-05,)] [eta: 0:01:54] loss: 1.1150e+00 Norm_mean: 5.5004e-01
|
182 |
+
2024-06-12 14:43:49,029 INFO: [3101_..][Iter: 660, lr:(1.200e-04,1.200e-06,1.200e-05,)] [eta: 0:01:42] loss: 3.4967e-01 Norm_mean: 5.5004e-01
|
183 |
+
2024-06-12 14:44:00,469 INFO: [3101_..][Iter: 670, lr:(1.067e-04,1.067e-06,1.067e-05,)] [eta: 0:01:31] loss: 9.9133e-02 Norm_mean: 5.5004e-01
|
184 |
+
2024-06-12 14:44:11,888 INFO: [3101_..][Iter: 680, lr:(9.333e-05,9.333e-07,9.333e-06,)] [eta: 0:01:19] loss: 3.4823e-01 Norm_mean: 5.5004e-01
|
185 |
+
2024-06-12 14:44:23,338 INFO: [3101_..][Iter: 690, lr:(8.000e-05,8.000e-07,8.000e-06,)] [eta: 0:01:08] loss: 4.2073e-01 Norm_mean: 5.5004e-01
|
186 |
+
2024-06-12 14:44:34,740 INFO: [3101_..][Iter: 700, lr:(6.667e-05,6.667e-07,6.667e-06,)] [eta: 0:00:56] loss: 2.1763e-01 Norm_mean: 5.5004e-01
|
187 |
+
2024-06-12 14:44:46,142 INFO: [3101_..][Iter: 710, lr:(5.333e-05,5.333e-07,5.333e-06,)] [eta: 0:00:44] loss: 1.7516e+00 Norm_mean: 5.5004e-01
|
188 |
+
2024-06-12 14:44:57,640 INFO: [3101_..][Iter: 720, lr:(4.000e-05,4.000e-07,4.000e-06,)] [eta: 0:00:33] loss: 4.5513e-01 Norm_mean: 5.5004e-01
|
189 |
+
2024-06-12 14:45:09,077 INFO: [3101_..][Iter: 730, lr:(2.667e-05,2.667e-07,2.667e-06,)] [eta: 0:00:21] loss: 5.1251e-01 Norm_mean: 5.5004e-01
|
190 |
+
2024-06-12 14:45:20,638 INFO: [3101_..][Iter: 740, lr:(1.333e-05,1.333e-07,1.333e-06,)] [eta: 0:00:10] loss: 7.4665e-01 Norm_mean: 5.5004e-01
|
191 |
+
2024-06-12 14:45:32,125 INFO: [3101_..][Iter: 750, lr:(0.000e+00,0.000e+00,0.000e+00,)] [eta: -1 day, 23:59:59] loss: 2.6865e-01 Norm_mean: 5.5004e-01
|
192 |
+
2024-06-12 14:45:32,274 INFO: Save state to /home/ujinsong/workspace/ortha/experiments/3101_elastigirl_ortho/models/edlora_model-latest.pth
|