cmulgy's picture
add demo
41b743c
raw
history blame
6.76 kB
import json
import re
import string
import pickle
from collections import Counter
from typing import List, Optional, Tuple
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from bert_score import score
import litellm
# Initialize the sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2')
# File I/O functions
def loadjson(filename: str) -> dict:
"""
Load data from a JSON file.
Args:
filename: Path to the JSON file
Returns:
Dictionary containing the loaded JSON data
"""
with open(filename, 'r', encoding='utf-8') as file:
data = json.load(file)
return data
def savejson(data: dict, filename: str) -> None:
"""
Save data to a JSON file.
Args:
data: Dictionary to save
filename: Path where the JSON file will be saved
"""
with open(filename, 'w') as json_file:
json.dump(data, json_file, indent=4)
def loadpkl(filename: str) -> any:
"""
Load data from a pickle file.
Args:
filename: Path to the pickle file
Returns:
The unpickled object
"""
with open(filename, 'rb') as file:
data = pickle.load(file)
return data
def savepkl(data: any, filename: str) -> None:
"""
Save data to a pickle file.
Args:
data: Object to save
filename: Path where the pickle file will be saved
"""
with open(filename, 'wb') as pkl_file:
pickle.dump(data, pkl_file)
# Text normalization and evaluation functions
def normalize_answer(s: str, normal_method: str = "") -> str:
"""
Normalize text for evaluation.
Args:
s: String to normalize
normal_method: Method for normalization ("mc" for multiple choice, "" for standard)
Returns:
Normalized string
"""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
def mc_remove(text):
a1 = re.findall('\([a-zA-Z]\)', text)
if len(a1) == 0:
return ""
return re.findall('\([a-zA-Z]\)', text)[-1]
if normal_method == "mc":
return mc_remove(s)
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction: str, ground_truth: str) -> Tuple[float, float, float]:
"""
Calculate F1 score between prediction and ground truth.
Args:
prediction: Predicted text
ground_truth: Ground truth text
Returns:
Tuple of (f1, precision, recall)
"""
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
ZERO_METRIC = (0, 0, 0)
if normalized_prediction in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return ZERO_METRIC
if normalized_ground_truth in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return ZERO_METRIC
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return ZERO_METRIC
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1, precision, recall
def exact_match_score(prediction: str, ground_truth: str, normal_method: str = "") -> bool:
"""
Check if prediction exactly matches ground truth after normalization.
Args:
prediction: Predicted text
ground_truth: Ground truth text
normal_method: Method for normalization
Returns:
True if exact match, False otherwise
"""
return (normalize_answer(prediction, normal_method=normal_method) ==
normalize_answer(ground_truth, normal_method=normal_method))
def get_bert_score(generate_response: List[str], ground_truth: List[str]) -> float:
"""
Calculate BERT score between generated responses and ground truths.
Args:
generate_response: List of generated responses
ground_truth: List of ground truth texts
Returns:
Average BERT score (F1)
"""
F_l = []
for inter in range(len(generate_response)):
generation = generate_response[inter]
gt = ground_truth[inter]
P, R, F = score([generation], [gt], lang="en", verbose=True)
F_l.append(F.mean().numpy().reshape(1)[0])
return np.array(F_l).mean()
# Embedding and dimensionality reduction
def reduce_embedding_dim(embed: np.ndarray, dim: int = 50) -> np.ndarray:
"""
Reduce dimensionality of embeddings using PCA.
Args:
embed: Embedding vectors
dim: Target dimension
Returns:
Reduced embeddings
"""
pca = PCA(n_components=dim)
reduced_embeddings = pca.fit_transform(embed)
return reduced_embeddings
def get_embedding(instructions: List[str]) -> np.ndarray:
"""
Get embeddings for a list of texts and optionally reduce dimensions.
Args:
instructions: List of texts to embed
dim: Target dimension for embeddings
Returns:
Numpy array of embeddings
"""
emb_list = model.encode(instructions)
return emb_list
# LLM prompting
def model_prompting(
llm_model: str,
prompt: str,
return_num: Optional[int] = 1,
max_token_num: Optional[int] = 512,
temperature: Optional[float] = 0.0,
top_p: Optional[float] = None,
stream: Optional[bool] = None,
) -> str:
"""
Get a response from an LLM model using LiteLLM.
Args:
llm_model: Name of the model to use
prompt: Input prompt text
return_num: Number of completions to generate
max_token_num: Maximum number of tokens to generate
temperature: Sampling temperature
top_p: Top-p sampling parameter
stream: Whether to stream the response
Returns:
Generated text response
"""
completion = litellm.completion(
model=llm_model,
messages=[{'role': 'user', 'content': prompt}],
max_tokens=max_token_num,
n=return_num,
top_p=top_p,
temperature=temperature,
stream=stream,
)
content = completion.choices[0].message.content
return content