Spaces:
Running
Running
Fix dropdown functionality for Hugging Face Spaces - improve dataset loading with multiple fallback approaches and better error handling
Browse files- .gitignore +5 -1
- demo.py +107 -15
.gitignore
CHANGED
@@ -59,4 +59,8 @@ logs/
|
|
59 |
*.temp
|
60 |
|
61 |
# Hugging Face Spaces specific
|
62 |
-
.cache/
|
|
|
|
|
|
|
|
|
|
59 |
*.temp
|
60 |
|
61 |
# Hugging Face Spaces specific
|
62 |
+
.cache/
|
63 |
+
|
64 |
+
# HuggingFace datasets cache
|
65 |
+
cache/
|
66 |
+
.huggingface/
|
demo.py
CHANGED
@@ -250,20 +250,51 @@ def get_template_subset_name(model_size: str, template_size: str) -> str:
|
|
250 |
|
251 |
def load_template_dataset(model_size: str, template_size: str) -> pd.DataFrame:
|
252 |
"""
|
253 |
-
Load thought templates from HuggingFace dataset.
|
254 |
"""
|
255 |
subset_name = get_template_subset_name(model_size, template_size)
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
def enhance_query_with_templates(
|
269 |
model_size: str,
|
@@ -286,6 +317,11 @@ def enhance_query_with_templates(
|
|
286 |
# Load template data from HuggingFace dataset
|
287 |
template_df = load_template_dataset(model_size, template_size)
|
288 |
|
|
|
|
|
|
|
|
|
|
|
289 |
# Generate embedding for the query if not provided
|
290 |
if query_embedding is None:
|
291 |
try:
|
@@ -296,8 +332,9 @@ def enhance_query_with_templates(
|
|
296 |
return query, []
|
297 |
|
298 |
# Filter templates by task description if provided
|
299 |
-
if task_description is None:
|
300 |
matching_templates = template_df
|
|
|
301 |
else:
|
302 |
matching_templates = template_df[template_df['task_description'] == task_description]
|
303 |
|
@@ -307,15 +344,17 @@ def enhance_query_with_templates(
|
|
307 |
|
308 |
if not partial_matches.empty:
|
309 |
matching_templates = partial_matches
|
310 |
-
print(f"Found partial matches for task: {task_description[:50]}...")
|
311 |
else:
|
312 |
-
print(f"No matching templates found for task: {task_description[:50]}...")
|
313 |
matching_templates = template_df
|
314 |
|
315 |
if matching_templates.empty:
|
316 |
print("No matching templates found. Returning original query.")
|
317 |
return query, []
|
318 |
|
|
|
|
|
319 |
# Calculate similarities with template embeddings
|
320 |
similarities = []
|
321 |
|
@@ -324,7 +363,11 @@ def enhance_query_with_templates(
|
|
324 |
|
325 |
# Try to parse existing template embedding
|
326 |
if 'query_embedding' in t_row and not pd.isna(t_row['query_embedding']):
|
327 |
-
|
|
|
|
|
|
|
|
|
328 |
|
329 |
# If no valid embedding found, generate one for the template query
|
330 |
if template_embedding is None and 'query' in t_row:
|
@@ -992,6 +1035,55 @@ def process_thought_template_query(query, template_style, task_description, top_
|
|
992 |
return error_msg, "", ""
|
993 |
|
994 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
995 |
# Create Gradio interface
|
996 |
def create_interface():
|
997 |
with gr.Blocks(
|
|
|
250 |
|
251 |
def load_template_dataset(model_size: str, template_size: str) -> pd.DataFrame:
|
252 |
"""
|
253 |
+
Load thought templates from HuggingFace dataset with robust error handling for Spaces deployment.
|
254 |
"""
|
255 |
subset_name = get_template_subset_name(model_size, template_size)
|
256 |
|
257 |
+
# Try multiple approaches to load the dataset
|
258 |
+
approaches = [
|
259 |
+
# Approach 1: Direct load with timeout
|
260 |
+
lambda: load_dataset("ulab-ai/FusionBench", subset_name, trust_remote_code=True),
|
261 |
+
# Approach 2: Load with cache_dir specification
|
262 |
+
lambda: load_dataset("ulab-ai/FusionBench", subset_name, cache_dir="./cache", trust_remote_code=True),
|
263 |
+
# Approach 3: Load with streaming (for large datasets)
|
264 |
+
lambda: load_dataset("ulab-ai/FusionBench", subset_name, streaming=True, trust_remote_code=True),
|
265 |
+
]
|
266 |
+
|
267 |
+
for i, approach in enumerate(approaches, 1):
|
268 |
+
try:
|
269 |
+
print(f"Attempting to load templates (approach {i}): ulab-ai/FusionBench, subset: {subset_name}")
|
270 |
+
|
271 |
+
dataset = approach()
|
272 |
+
|
273 |
+
# Handle streaming dataset
|
274 |
+
if hasattr(dataset, 'iter') and callable(dataset.iter):
|
275 |
+
# Convert streaming dataset to list
|
276 |
+
data_list = list(dataset['data'])
|
277 |
+
template_df = pd.DataFrame(data_list)
|
278 |
+
else:
|
279 |
+
# Regular dataset
|
280 |
+
template_df = pd.DataFrame(dataset['data'])
|
281 |
+
|
282 |
+
print(f"✅ Successfully loaded {len(template_df)} templates from {subset_name}")
|
283 |
+
return template_df
|
284 |
+
|
285 |
+
except Exception as e:
|
286 |
+
print(f"❌ Approach {i} failed: {str(e)}")
|
287 |
+
if i == len(approaches):
|
288 |
+
# All approaches failed, provide detailed error
|
289 |
+
error_msg = f"Failed to load template dataset {subset_name} after trying {len(approaches)} approaches. Last error: {str(e)}"
|
290 |
+
print(error_msg)
|
291 |
+
|
292 |
+
# Return empty DataFrame with warning
|
293 |
+
print("⚠️ Returning empty template DataFrame - functionality will be limited")
|
294 |
+
return pd.DataFrame(columns=['query', 'thought_template', 'task_description', 'query_embedding'])
|
295 |
+
|
296 |
+
# This should never be reached, but just in case
|
297 |
+
return pd.DataFrame(columns=['query', 'thought_template', 'task_description', 'query_embedding'])
|
298 |
|
299 |
def enhance_query_with_templates(
|
300 |
model_size: str,
|
|
|
317 |
# Load template data from HuggingFace dataset
|
318 |
template_df = load_template_dataset(model_size, template_size)
|
319 |
|
320 |
+
# Check if dataset is empty (failed to load)
|
321 |
+
if template_df.empty:
|
322 |
+
print("⚠️ Template dataset is empty - returning original query")
|
323 |
+
return query, []
|
324 |
+
|
325 |
# Generate embedding for the query if not provided
|
326 |
if query_embedding is None:
|
327 |
try:
|
|
|
332 |
return query, []
|
333 |
|
334 |
# Filter templates by task description if provided
|
335 |
+
if task_description is None or not task_description.strip():
|
336 |
matching_templates = template_df
|
337 |
+
print(f"Using all {len(matching_templates)} templates (no task filter)")
|
338 |
else:
|
339 |
matching_templates = template_df[template_df['task_description'] == task_description]
|
340 |
|
|
|
344 |
|
345 |
if not partial_matches.empty:
|
346 |
matching_templates = partial_matches
|
347 |
+
print(f"Found partial matches for task: {task_description[:50]}... ({len(matching_templates)} templates)")
|
348 |
else:
|
349 |
+
print(f"No matching templates found for task: {task_description[:50]}... - using all templates")
|
350 |
matching_templates = template_df
|
351 |
|
352 |
if matching_templates.empty:
|
353 |
print("No matching templates found. Returning original query.")
|
354 |
return query, []
|
355 |
|
356 |
+
print(f"Processing {len(matching_templates)} templates for similarity calculation...")
|
357 |
+
|
358 |
# Calculate similarities with template embeddings
|
359 |
similarities = []
|
360 |
|
|
|
363 |
|
364 |
# Try to parse existing template embedding
|
365 |
if 'query_embedding' in t_row and not pd.isna(t_row['query_embedding']):
|
366 |
+
try:
|
367 |
+
template_embedding = parse_embedding(t_row['query_embedding'])
|
368 |
+
except Exception as e:
|
369 |
+
print(f"Failed to parse template embedding: {str(e)}")
|
370 |
+
template_embedding = None
|
371 |
|
372 |
# If no valid embedding found, generate one for the template query
|
373 |
if template_embedding is None and 'query' in t_row:
|
|
|
1035 |
return error_msg, "", ""
|
1036 |
|
1037 |
|
1038 |
+
# Test function to verify dropdown functionality
|
1039 |
+
def test_dropdown_functionality():
|
1040 |
+
"""Test function to verify dropdown components are working"""
|
1041 |
+
print("Testing dropdown functionality...")
|
1042 |
+
|
1043 |
+
# Test template style mapping
|
1044 |
+
style_mapping = {
|
1045 |
+
"8b_full": ("8b", "full"),
|
1046 |
+
"8b_small": ("8b", "small"),
|
1047 |
+
"70b_full": ("70b", "full"),
|
1048 |
+
"70b_small": ("70b", "small")
|
1049 |
+
}
|
1050 |
+
|
1051 |
+
for style, (model_size, template_size) in style_mapping.items():
|
1052 |
+
print(f"✅ Template style '{style}' maps to model_size='{model_size}', template_size='{template_size}'")
|
1053 |
+
|
1054 |
+
# Test benchmark task options
|
1055 |
+
benchmark_tasks = [
|
1056 |
+
("All Tasks", ""),
|
1057 |
+
("ARC-Challenge", "ARC-Challenge"),
|
1058 |
+
("BoolQ", "BoolQ"),
|
1059 |
+
("CommonsenseQA", "CommonsenseQA"),
|
1060 |
+
("GPQA", "GPQA"),
|
1061 |
+
("GSM8K", "GSM8K"),
|
1062 |
+
("HellaSwag", "HellaSwag"),
|
1063 |
+
("HumanEval", "HumanEval"),
|
1064 |
+
("MATH", "MATH"),
|
1065 |
+
("MBPP", "MBPP"),
|
1066 |
+
("MMLU", "MMLU"),
|
1067 |
+
("Natural Questions", "Natural Questions"),
|
1068 |
+
("OpenBookQA", "OpenBookQA"),
|
1069 |
+
("SQuAD", "SQuAD"),
|
1070 |
+
("TriviaQA", "TriviaQA")
|
1071 |
+
]
|
1072 |
+
|
1073 |
+
print(f"✅ {len(benchmark_tasks)} benchmark task options available")
|
1074 |
+
|
1075 |
+
return True
|
1076 |
+
|
1077 |
+
# Run test on import
|
1078 |
+
if __name__ == "__main__":
|
1079 |
+
test_dropdown_functionality()
|
1080 |
+
else:
|
1081 |
+
# Run test when module is imported
|
1082 |
+
try:
|
1083 |
+
test_dropdown_functionality()
|
1084 |
+
except Exception as e:
|
1085 |
+
print(f"Warning: Dropdown functionality test failed: {e}")
|
1086 |
+
|
1087 |
# Create Gradio interface
|
1088 |
def create_interface():
|
1089 |
with gr.Blocks(
|