File size: 1,276 Bytes
421ae0c
8776fa5
6aa742a
a3214e3
d23ca88
6aa742a
 
 
dd43163
6aa742a
 
 
 
 
 
3f62def
d216ada
6aa742a
 
728771a
7241802
 
 
dd43163
7241802
 
728771a
 
 
 
 
dd43163
 
6aa742a
d4e1cba
f07397f
dd43163
421ae0c
6aa742a
 
03e7f9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from model import SurfinBird
from torchvision import transforms, io
import csv
import torch

with open("birds.csv", "r") as r:
  birds = list(csv.reader(r, delimiter=","))
  birds = birds[0]

config = {"num_channels": 3, "hidden_units": 256, "num_classes": 525, "labels": birds}

model = SurfinBird(config=config)
model = SurfinBird.from_pretrained("ulichovick/birdnet")

titulo = "Gimme da bird!"
desc = "Carga la imágen de un ave y el modelo intentará identificar la especie del ave en la foto(limitado a 525 especies) "


def predice(imagen):
    usr_img_transform = transforms.Compose([
    transforms.Resize(size=(224, 224)),
    ])
    target_image = io.read_image(str(imagen)).type(torch.float32)
    target_image = target_image / 255.
    target_image = usr_img_transform(target_image)
    model.eval()
    with torch.inference_mode():
      target_image = target_image.unsqueeze(dim=0)
      target_image_pred = model(target_image)
    target_image_pred_label = torch.argmax(target_image_pred, dim=1)
    label = config["labels"][target_image_pred_label.item()]
    return str(label)

gr.Interface(
    predice,
    inputs=gr.Image(label="gimme da bird", type="filepath"),
    outputs=["text"],
    title=titulo,
    description=desc,
).launch()