Spaces:
Sleeping
Sleeping
from huggingface_hub import PyTorchModelHubMixin | |
from torch import nn | |
import torch | |
class SurfinBird(nn.Module, PyTorchModelHubMixin): | |
def __init__(self, config: dict) -> None: | |
super().__init__() | |
self.conv1 = nn.Conv2d( | |
in_channels=config["num_channels"], | |
out_channels=64, | |
kernel_size=7, | |
stride=2, | |
padding=3) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu1 = nn.ReLU() | |
self.mp1 = nn.MaxPool2d(kernel_size=2, | |
stride=2) | |
self.conv_block_2 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=64, | |
out_channels=64, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=64, | |
out_channels=64, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=64, | |
out_channels=64, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, | |
stride=2) | |
) | |
self.conv_block_3 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=64, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=128, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=128, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, | |
stride=2) | |
) | |
self.conv_block_4 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=128, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=128, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=128, | |
out_channels=128, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, | |
stride=2) | |
) | |
self.conv_block_5 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=128, | |
out_channels=256, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=256, | |
out_channels=256, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=256, | |
out_channels=256, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, | |
stride=2) | |
) | |
self.conv_block_6 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=256, | |
out_channels=256, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=256, | |
out_channels=256, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=256, | |
out_channels=256, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, | |
stride=2) | |
) | |
self.avgpool = nn.Sequential( | |
nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
) | |
self.classifier = nn.Sequential( | |
nn.Flatten(), | |
nn.Linear(in_features=config["hidden_units"]*1*1, | |
out_features=config["num_classes"]) | |
) | |
def forward(self, x: torch.Tensor): | |
return self.classifier(self.avgpool(self.conv_block_6(self.conv_block_5(self.conv_block_4(self.conv_block_3(self.conv_block_2(self.mp1(self.relu1(self.bn1(self.conv1(x))))))))))) | |
config = {"num_channels": 3, "hidden_units": 256, "num_classes": 525} |