Spaces:
Runtime error
Runtime error
added app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from enformer_pytorch import Enformer, load_pretrained_from_url
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
# Load pretrained Enformer model (or use from_pretrained if you're using HF model)
|
9 |
+
model = load_pretrained_from_url("https://dl.fbaipublicfiles.com/enformer/enformer_pytorch.pt")
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
# Helper: one-hot encode DNA (A, C, G, T)
|
13 |
+
def one_hot_encode(sequence, length=196_608):
|
14 |
+
mapping = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
|
15 |
+
one_hot = np.zeros((length, 4), dtype=np.float32)
|
16 |
+
sequence = sequence.upper().replace("N", "A") # replace ambiguous bases
|
17 |
+
for i, base in enumerate(sequence[:length]):
|
18 |
+
if base in mapping:
|
19 |
+
one_hot[i, mapping[base]] = 1.0
|
20 |
+
return one_hot
|
21 |
+
|
22 |
+
# Prediction function
|
23 |
+
def predict_expression(dna_sequence):
|
24 |
+
encoded = one_hot_encode(dna_sequence)
|
25 |
+
input_tensor = torch.tensor(encoded).unsqueeze(0) # (1, length, 4)
|
26 |
+
input_tensor = rearrange(input_tensor, 'b l c -> b c l') # (1, 4, length)
|
27 |
+
|
28 |
+
with torch.no_grad():
|
29 |
+
output = model(input_tensor)
|
30 |
+
expression = output['human'] # shape: (1, 896, 5313)
|
31 |
+
avg_expr = expression[0].mean(dim=0).numpy() # average across sequence positions
|
32 |
+
|
33 |
+
# Plot first 10 tissues (customize as needed)
|
34 |
+
plt.figure(figsize=(12, 4))
|
35 |
+
plt.bar(range(10), avg_expr[:10])
|
36 |
+
plt.xticks(range(10), [f"Tissue {i}" for i in range(10)])
|
37 |
+
plt.ylabel("Predicted Expression")
|
38 |
+
plt.title("Gene Expression Prediction (avg across bins)")
|
39 |
+
plt.tight_layout()
|
40 |
+
|
41 |
+
return plt.gcf()
|
42 |
+
|
43 |
+
# Gradio Interface
|
44 |
+
demo = gr.Interface(
|
45 |
+
fn=predict_expression,
|
46 |
+
inputs=gr.Textbox(lines=5, label="Paste DNA Sequence (A/C/G/T only, ~200kb)"),
|
47 |
+
outputs=gr.Plot(label="Predicted Gene Expression"),
|
48 |
+
title="Gene Expression Predictor (Enformer)",
|
49 |
+
description="Paste a DNA sequence to predict tissue-specific gene expression using a pretrained Enformer model."
|
50 |
+
)
|
51 |
+
|
52 |
+
demo.launch()
|