Spaces:
Runtime error
Runtime error
File size: 8,308 Bytes
273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 9832882 241c492 9832882 241c492 9832882 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 241c492 9832882 273089c 9832882 273089c 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
import tempfile
import os
import fitz # PyMuPDF for working with PDF files
import uuid
# Importing middleware and RAG (Retrieval-Augmented Generation) components
from middleware import Middleware
from rag import Rag
rag = Rag() # Initializing RAG for question-answering functionality
# Function to generate a unique UUID for each user session
def generate_uuid(state):
# Check if UUID already exists in session state
if state["user_uuid"] is None:
# Generate a new UUID if not already set
state["user_uuid"] = str(uuid.uuid4())
return state["user_uuid"]
class PDFSearchApp:
"""Class to manage PDF upload, indexing, and querying."""
def __init__(self):
self.indexed_docs = {} # Dictionary to track indexed documents by user ID
self.current_pdf = None # Store the currently processed PDF
# Function to handle file uploads and convert PDFs into searchable data
def upload_and_convert(self, state, file, max_pages):
id = generate_uuid(state) # Get unique user ID
if file is None: # Check if a file was uploaded
return "No file uploaded"
print(f"Uploading file: {file.name}, id: {id}")
try:
self.current_pdf = file.name # Store the name of the uploaded file
# Initialize Middleware for indexing the PDF content
middleware = Middleware(id, create_collection=True)
# Index the specified number of pages from the PDF
pages = middleware.index(pdf_path=file.name, id=id, max_pages=max_pages)
# Mark the document as indexed for this user
self.indexed_docs[id] = True
return f"Uploaded and extracted {len(pages)} pages"
except Exception as e: # Handle errors during processing
return f"Error processing PDF: {str(e)}"
# def search_documents(self, state, query, num_results=3): # Set num_results to return more pages
# """
# Search for a query within indexed PDF documents and return multiple matching pages.
# Args:
# state (dict): Session state containing user-specific data.
# query (str): The user's search query.
# num_results (int): Number of top results to return (default is 3).
# Returns:
# tuple: (list of image paths, RAG response) or an error message if no match is found.
# """
# print(f"Searching for query: {query}")
# id = generate_uuid(state) # Get unique user ID
# # Check if the document has been indexed
# if not self.indexed_docs.get(id, False):
# print("Please index documents first")
# return "Please index documents first", None
# # Check if a query was provided
# if not query:
# print("Please enter a search query")
# return "Please enter a search query", None
# try:
# # Initialize Middleware for searching
# middleware = Middleware(id, create_collection=False)
# # Perform the search and retrieve the top results
# search_results = middleware.search([query]) # Returns multiple matches
# # Check if there are valid search results
# if not search_results or not search_results[0]:
# print("No relevant matches found in the PDF")
# return "No relevant matches found in the PDF", None
# # Extract multiple matching pages (up to num_results)
# image_paths = []
# for i in range(min(len(search_results[0]), num_results)): # Limit to num_results
# page_num = search_results[0][i][1] + 1 # Convert zero-based index to one-based
# img_path = f"pages/{id}/page_{page_num}.png"
# image_paths.append(img_path)
# print(f"Retrieved image paths: {image_paths}")
# # Get an answer from the RAG model using multiple images
# rag_response = rag.get_answer_from_gemini(query, image_paths)
# return image_paths, rag_response # Return multiple image paths and RAG response
# except Exception as e:
# # Handle and log any errors that occur
# print(f"Error during search: {e}")
# return f"Error during search: {str(e)}", None
# Function to handle search queries within indexed PDFs
def search_documents(self, state, query, num_results=1):
print(f"Searching for query: {query}")
id = generate_uuid(state) # Get unique user ID
# Check if the document has been indexed
if not self.indexed_docs.get(id, False):
print("Please index documents first")
return "Please index documents first", "--"
# Check if a query was provided
if not query:
print("Please enter a search query")
return "Please enter a search query", "--"
try:
# Initialize Middleware for searching
middleware = Middleware(id, create_collection=False)
# Perform the search and retrieve the top result
search_results = middleware.search([query])[0]
# Extract the page number from the search results
page_num = search_results[0][1] + 1
print(f"Retrieved page number: {page_num}")
# Construct the image path for the retrieved page
img_path = f"pages/{id}/page_{page_num}.png"
print(f"Retrieved image path: {img_path}")
# Get an answer from the RAG model using the query and associated image
rag_response = rag.get_answer_from_gemini(query, [img_path])
return img_path, rag_response
except Exception as e: # Handle errors during the search process
return f"Error during search: {str(e)}", "--"
# Function to create the Gradio user interface
def create_ui():
app = PDFSearchApp() # Instantiate the PDFSearchApp class
with gr.Blocks() as demo:
state = gr.State(value={"user_uuid": None}) # Initialize session state
# Header and introduction markdown
gr.Markdown("# Colpali Milvus Multimodal RAG Demo")
gr.Markdown(
"This demo showcases how to use [Colpali](https://github.com/illuin-tech/colpali) embeddings with [Milvus](https://milvus.io/) and utilizing Gemini/OpenAI multimodal RAG for pdf search and Q&A."
)
# Upload PDF tab
with gr.Tab("Upload PDF"):
with gr.Column():
# Input for uploading files
file_input = gr.File(label="Upload PDF")
# Slider to select the maximum number of pages to index
max_pages_input = gr.Slider(
minimum=1,
maximum=50,
value=20,
step=10,
label="Max pages to extract and index"
)
# Textbox to display indexing status
status = gr.Textbox(label="Indexing Status", interactive=False)
# Query tab for searching documents
with gr.Tab("Query"):
with gr.Column():
# Textbox for entering search queries
query_input = gr.Textbox(label="Enter query")
# Button to trigger the search
search_btn = gr.Button("Query")
# Textbox to display the response from RAG
llm_answer = gr.Textbox(label="RAG Response", interactive=False)
# Image display for the top-matching page
images = gr.Image(label="Top page matching query")
# Event handlers to connect UI components with backend functions
file_input.change(
fn=app.upload_and_convert,
inputs=[state, file_input, max_pages_input],
outputs=[status]
)
search_btn.click(
fn=app.search_documents,
inputs=[state, query_input],
outputs=[images, llm_answer]
)
return demo # Return the constructed UI
# Entry point to launch the application
if __name__ == "__main__":
demo = create_ui() # Create the Gradio interface
demo.launch() # Launch the app
|