Spaces:
Runtime error
Runtime error
File size: 11,612 Bytes
241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c a53d884 241c492 a53d884 241c492 a53d884 241c492 a53d884 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c a53d884 241c492 a53d884 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# Import necessary modules
from pymilvus import MilvusClient, DataType # Milvus client and data type definitions
import numpy as np # For numerical operations
import concurrent.futures # For concurrent execution of tasks
class MilvusManager:
"""
A manager class for interacting with the Milvus database, handling collection creation,
data insertion, and search functionality.
"""
def __init__(self, milvus_uri, collection_name, create_collection, dim=128):
"""
Initialize the MilvusManager.
Args:
milvus_uri (str): URI for connecting to the Milvus server.
collection_name (str): Name of the collection in Milvus.
create_collection (bool): Whether to create a new collection.
dim (int): Dimensionality of the vector embeddings (default is 128).
"""
self.client = MilvusClient(uri=milvus_uri) # Initialize the Milvus client
self.collection_name = collection_name
self.dim = dim
# Load the collection if it exists, otherwise create it
if self.client.has_collection(collection_name=self.collection_name):
self.client.load_collection(collection_name)
if create_collection:
self.create_collection() # Create a new collection
self.create_index() # Create an index for the collection
def create_collection(self):
"""
Create a new collection in Milvus with a predefined schema.
"""
# Drop the collection if it already exists
if self.client.has_collection(collection_name=self.collection_name):
self.client.drop_collection(collection_name=self.collection_name)
# Define the schema for the collection
schema = self.client.create_schema(
auto_id=True, # Enable automatic ID assignment
enable_dynamic_fields=True, # Allow dynamic fields
)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True) # Primary key
schema.add_field(
field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=self.dim # Vector field
)
schema.add_field(field_name="seq_id", datatype=DataType.INT16) # Sequence ID
schema.add_field(field_name="doc_id", datatype=DataType.INT64) # Document ID
schema.add_field(field_name="doc", datatype=DataType.VARCHAR, max_length=65535) # Document path
# Create the collection with the specified schema
self.client.create_collection(
collection_name=self.collection_name, schema=schema
)
def create_index(self):
"""
Create an HNSW index for the vector field in the collection.
"""
# Release the collection before updating the index
self.client.release_collection(collection_name=self.collection_name)
self.client.drop_index(collection_name=self.collection_name, index_name="vector")
# Define the HNSW index parameters
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="vector",
index_name="vector_index",
index_type="HNSW", # Hierarchical Navigable Small World graph index
metric_type="IP", # Inner Product (dot product) as similarity metric
params={
"M": 16, # Number of candidate connections
"efConstruction": 500, # Construction complexity
},
)
# Create the index and synchronize with the server
self.client.create_index(
collection_name=self.collection_name, index_params=index_params, sync=True
)
def create_scalar_index(self):
"""
Create an inverted index for scalar fields such as document IDs.
"""
self.client.release_collection(collection_name=self.collection_name)
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="doc_id",
index_name="int32_index",
index_type="INVERTED", # Inverted index for scalar data
)
self.client.create_index(
collection_name=self.collection_name, index_params=index_params, sync=True
)
def search(self, data, topk, threshold=0.7):
"""
Search for the top-k most similar vectors in the collection, filtered by a relevance threshold.
Args:
data (array-like): Query vector.
topk (int): Number of top results to return.
threshold (float): Minimum score threshold for relevance (default is 0.5).
Returns:
list: Sorted list of top-k results that meet the threshold.
"""
search_params = {"metric_type": "IP", "params": {}} # Search parameters for Inner Product
results = self.client.search(
self.collection_name,
data,
limit=50, # Initial retrieval limit
output_fields=["vector", "seq_id", "doc_id"], # Fields to include in the output
search_params=search_params,
)
# Collect unique document IDs from the search results
doc_ids = set()
for r_id in range(len(results)):
for r in range(len(results[r_id])):
doc_ids.add(results[r_id][r]["entity"]["doc_id"])
scores = []
# Function to rerank a single document based on its relevance to the query
def rerank_single_doc(doc_id, data, client, collection_name):
doc_colbert_vecs = client.query(
collection_name=collection_name,
filter=f"doc_id in [{doc_id}, {doc_id + 1}]", # Query documents by ID
output_fields=["seq_id", "vector", "doc"], # Fields to retrieve
limit=1000, # Retrieve a maximum of 1000 vectors per document
)
# Compute the maximum similarity score for the document
doc_vecs = np.vstack(
[doc_colbert_vecs[i]["vector"] for i in range(len(doc_colbert_vecs))]
)
score = np.dot(data, doc_vecs.T).max(1).sum()
return (score, doc_id)
# Use multithreading to rerank documents in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=300) as executor:
futures = {
executor.submit(
rerank_single_doc, doc_id, data, self.client, self.collection_name
): doc_id
for doc_id in doc_ids
}
for future in concurrent.futures.as_completed(futures):
score, doc_id = future.result()
scores.append((score, doc_id))
# Filter scores by threshold
filtered_scores = [item for item in scores if item[0] >= threshold]
# Sort scores in descending order and return the top-k results
filtered_scores.sort(key=lambda x: x[0], reverse=True)
return filtered_scores[:topk] if len(filtered_scores) >= topk else filtered_scores
# def search(self, data, topk):
# """
# Search for the top-k most similar vectors in the collection.
# Args:
# data (array-like): Query vector.
# topk (int): Number of top results to return.
# Returns:
# list: Sorted list of top-k results.
# """
# search_params = {"metric_type": "IP", "params": {}} # Search parameters for Inner Product
# results = self.client.search(
# self.collection_name,
# data,
# limit=50, # Initial retrieval limit
# output_fields=["vector", "seq_id", "doc_id"], # Fields to include in the output
# search_params=search_params,
# )
# # Collect unique document IDs from the search results
# doc_ids = set()
# for r_id in range(len(results)):
# for r in range(len(results[r_id])):
# doc_ids.add(results[r_id][r]["entity"]["doc_id"])
# scores = []
# # Function to rerank a single document based on its relevance to the query
# def rerank_single_doc(doc_id, data, client, collection_name):
# doc_colbert_vecs = client.query(
# collection_name=collection_name,
# filter=f"doc_id in [{doc_id}, {doc_id + 1}]", # Query documents by ID
# output_fields=["seq_id", "vector", "doc"], # Fields to retrieve
# limit=1000, # Retrieve a maximum of 1000 vectors per document
# )
# # Compute the maximum similarity score for the document
# doc_vecs = np.vstack(
# [doc_colbert_vecs[i]["vector"] for i in range(len(doc_colbert_vecs))]
# )
# score = np.dot(data, doc_vecs.T).max(1).sum()
# return (score, doc_id)
# # Use multithreading to rerank documents in parallel
# with concurrent.futures.ThreadPoolExecutor(max_workers=300) as executor:
# futures = {
# executor.submit(
# rerank_single_doc, doc_id, data, self.client, self.collection_name
# ): doc_id
# for doc_id in doc_ids
# }
# for future in concurrent.futures.as_completed(futures):
# score, doc_id = future.result()
# scores.append((score, doc_id))
# # Sort scores in descending order and return the top-k results
# scores.sort(key=lambda x: x[0], reverse=True)
# return scores[:topk] if len(scores) >= topk else scores
def insert(self, data):
"""
Insert a batch of data into the collection.
Args:
data (dict): Dictionary containing vector embeddings and metadata.
"""
colbert_vecs = [vec for vec in data["colbert_vecs"]]
seq_length = len(colbert_vecs)
doc_ids = [data["doc_id"] for i in range(seq_length)]
seq_ids = list(range(seq_length))
docs = [""] * seq_length
docs[0] = data["filepath"] # Store file path in the first entry
# Insert the data into the collection
self.client.insert(
self.collection_name,
[
{
"vector": colbert_vecs[i],
"seq_id": seq_ids[i],
"doc_id": doc_ids[i],
"doc": docs[i],
}
for i in range(seq_length)
],
)
def get_images_as_doc(self, images_with_vectors: list):
"""
Convert image data with vectors into document-like format for insertion.
Args:
images_with_vectors (list): List of dictionaries containing image vectors and file paths.
Returns:
list: Transformed data ready for insertion.
"""
images_data = []
for i in range(len(images_with_vectors)):
data = {
"colbert_vecs": images_with_vectors[i]["colbert_vecs"],
"doc_id": i,
"filepath": images_with_vectors[i]["filepath"],
}
images_data.append(data)
return images_data
def insert_images_data(self, image_data):
"""
Insert processed image data into the collection.
Args:
image_data (list): List of image data dictionaries.
"""
data = self.get_images_as_doc(image_data)
for i in range(len(data)):
self.insert(data[i]) # Insert each item individually
|