Spaces:
Runtime error
Runtime error
File size: 6,821 Bytes
241c492 273089c 241c492 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 9832882 273089c 9832882 273089c 9832882 273089c 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 9832882 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c 241c492 273089c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Import required libraries
import requests # For making HTTP requests
import os # For accessing environment variables
import google.generativeai as genai # For interacting with Google's Generative AI APIs
from typing import List # For type annotations
from utils import encode_image # Utility function to encode images as base64
from PIL import Image # For image processing
class Rag:
"""
A class for interacting with Generative AI models (Gemini and OpenAI) to retrieve answers
based on user queries and associated images.
"""
def get_answer_from_gemini(self, query: str, imagePaths: List[str]) -> str:
"""
Query the Gemini model with a text query and associated images.
Args:
query (str): The user's query.
imagePaths (List[str]): List of file paths to images.
Returns:
str: The response text from the Gemini model.
"""
print(f"Querying Gemini for query={query}, imagePaths={imagePaths}")
try:
# Configure the Gemini API client using the API key from environment variables
genai.configure(api_key=os.environ['GEMINI_API_KEY'])
# Initialize the Gemini generative model
model = genai.GenerativeModel('gemini-1.5-flash')
# Load images from the given paths
images = [Image.open(path) for path in imagePaths]
# Start a new chat session
chat = model.start_chat()
# Send the query and images to the model
response = chat.send_message([*images, query])
# Extract the response text
answer = response.text
print(answer) # Log the answer
return answer
except Exception as e:
# Handle and log any errors that occur
print(f"An error occurred while querying Gemini: {e}")
return f"Error: {str(e)}"
def get_answer_from_openai(self, query: str, imagesPaths: List[str]) -> str:
"""
Query OpenAI's GPT model with a text query and associated images.
Args:
query (str): The user's query.
imagesPaths (List[str]): List of file paths to images.
Returns:
str: The response text from OpenAI.
"""
print(f"Querying OpenAI for query={query}, imagesPaths={imagesPaths}")
try:
# Prepare the API payload with the query and images
payload = self.__get_openai_api_payload(query, imagesPaths)
# Define the HTTP headers for the OpenAI API request
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}" # API key from environment variables
}
# Send a POST request to the OpenAI API
response = requests.post(
url="https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload
)
response.raise_for_status() # Raise an error for unsuccessful requests
# Extract the content of the response
answer = response.json()["choices"][0]["message"]["content"]
print(answer) # Log the answer
return answer
except Exception as e:
# Handle and log any errors that occur
print(f"An error occurred while querying OpenAI: {e}")
return None
# def get_answer_from_gemini(self, query: str, imagePaths: List[str]) -> str:
# """
# Query the Gemini model with a text query and associated images.
# Args:
# query (str): The user's query.
# imagePaths (List[str]): List of file paths to images.
# Returns:
# str: The response text from the Gemini model.
# """
# print(f"Querying Gemini for query={query}, imagePaths={imagePaths}")
# try:
# # Configure the Gemini API client using the API key from environment variables
# genai.configure(api_key=os.environ['GEMINI_API_KEY'])
# # Initialize the Gemini generative model
# model = genai.GenerativeModel('gemini-1.5-flash')
# # Load images from the given paths (skip missing files)
# images = []
# for path in imagePaths:
# if os.path.exists(path):
# images.append(Image.open(path))
# else:
# print(f"Warning: Image not found {path}, skipping.")
# # Start a new chat session
# chat = model.start_chat()
# # Construct the input for the model (handle cases with and without images)
# input_data = [query] if not images else [*images, query]
# # Send the query (and images, if any) to the model
# response = chat.send_message(input_data)
# # Extract the response text
# answer = response.text
# print(answer) # Log the answer
# return answer
# except Exception as e:
# # Handle and log any errors that occur
# print(f"An error occurred while querying Gemini: {e}")
# return f"Error: {str(e)}"
def __get_openai_api_payload(self, query: str, imagesPaths: List[str]) -> dict:
"""
Prepare the payload for the OpenAI API request.
Args:
query (str): The user's query.
imagesPaths (List[str]): List of file paths to images.
Returns:
dict: The payload for the OpenAI API request.
"""
image_payload = [] # List to store encoded image data
# Encode each image as base64 and prepare the payload
for imagePath in imagesPaths:
base64_image = encode_image(imagePath) # Encode image in base64
image_payload.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}" # Embed image data as a URL
}
})
# Create the complete payload for the API request
payload = {
"model": "gpt-4o", # Specify the OpenAI model
"messages": [
{
"role": "user", # Role of the message sender
"content": [
{
"type": "text",
"text": query # Include the user's query
},
*image_payload # Include the image data
]
}
],
"max_tokens": 1024 # Limit the response length
}
return payload
|