File size: 4,730 Bytes
5c60ed2 0bf6060 f8adcff 0635997 7c12ef4 d5c54ef 0635997 f846748 35f9142 60ac7f7 213b4a3 60ac7f7 f846748 0635997 836fc15 0635997 8661441 d5c54ef 23552ab 2e0dbf3 f846748 c3ef985 f846748 1001424 7e5bae2 443f706 d2eb5fb 309b510 a1c75cc 309b510 7cc0278 afce1f4 a87ec38 d2eb5fb 1eaeeb8 d2eb5fb d897e9d 4e67249 2e0dbf3 e061cc2 1001424 4e67249 be65967 4e67249 1001424 4e67249 34f414b a2933d7 f846748 23552ab d2eb5fb f846748 c3ef985 f846748 cddcba8 f846748 cdec1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
from transformers import pipeline
from huggingface_hub import InferenceClient, login, snapshot_download
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
import os
import pandas as pd
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
HF_TOKEN=os.getenv('TOKEN')
login(HF_TOKEN)
#model = "meta-llama/Llama-3.2-1B-Instruct"
#model = "google/mt5-small"
model = "mistralai/Mistral-7B-Instruct-v0.3"
client = InferenceClient(model)
folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
vector_db = FAISS.load_local("faiss_index_8k", embeddings, allow_dangerous_deserialization=True)
df = pd.read_csv("faiss_index/bger_cedh_db 1954-2024.csv")
system_prompt = """ You are an assistant in Swiss Jurisprudence law.
Please answer the user in the same language that he used in his question using the following given context, not prior or other knowledge.
If no relevant cases were retrieved or the issue has not been addressed within the context, just say "I can't find enough relevant information".
Don't make up an answer or give irrelevant information not requested by the user and do not give any links that are not provided in the context.
Otherwise, if relevant cases were found, start by summarizing these cases in the user's question's language and reference the sources, including the source, urls and dates.
"""
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
score,
):
retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score})
documents = retriever.invoke(message)
spacer = " \n"
context = ""
print(len(documents))
for doc in documents:
case_text = df[df["case_url"] == doc.metadata["case_url"]].case_text.values[0]
context += "Case number: " + doc.metadata["case_nb"] + spacer
context += "Case source: " + ("Swiss Federal Court" if doc.metadata["case_ref"] == "ATF" else "European Court of Human Rights") + spacer
context += "Case date: " + doc.metadata["case_date"] + spacer
context += "Case url: " + doc.metadata["case_url"] + spacer
context += "Case text: " + doc.page_content + spacer
#context += "Case text: " + case_text[:8000] + spacer
system_message += f"""
The following case extracts have been found in either Swiss Federal Court or European Court of Human Rights cases and could fit the question:
{context}
Instructions: Always answer the user using the language used in his question.
"""
messages = [{"role": "system", "content": system_message}]
print(system_message)
print(message)
# message = f"""
#The user is asking you the following question: {message}
#The following case extracts have been found in either Swiss Federal Court or European Court of Human Rights cases and could fit the question:
#{context}
#Task: Always answer the user using the language used in his question: {message}
# """
# print(message)
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=system_prompt, label="System message"),
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Score Threshold"),
],
description="# 📜 ALexI: Artificial Legal Intelligence for Swiss Jurisprudence",
)
if __name__ == "__main__":
demo.launch(debug=True) |