File size: 2,820 Bytes
5c60ed2
f8adcff
0635997
 
7c12ef4
0635997
 
f846748
 
 
cd7ca86
185d396
57b0d16
f846748
0635997
 
 
 
 
a37b742
0635997
f846748
 
 
 
 
 
 
 
5b9e4ac
f846748
a37b742
443f706
a37b742
 
 
 
1cafcb9
a37b742
be65967
34f414b
 
 
 
 
 
 
f846748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1fef0d
f846748
 
 
 
 
 
 
 
 
 
9fce83c
f846748
 
 
 
cdec1a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
from huggingface_hub import InferenceClient, login, snapshot_download
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
import os


"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
login(token=os.getenv('TOKEN'))
client = InferenceClient("meta-llama/Llama-3.2-1B-Instruct")
#client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")

folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())

embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")

vector_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.75})

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    document = retriever.invoke(message)

    if document == []:
        message = message + "\nNo cases were found about this subject"
    else:
        message = message + "\nUse the following jurisprudence case to answer " + document[0].page_content + "\n Give the following url " + document[0].metadata["case_url"]
    
    print(message)

#    for val in history:
#        if val[0]:
#            messages.append({"role": "user", "content": val[0]})
#        if val[1]:
#            messages.append({"role": "assistant", "content": val[1]})

#    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    description="# 📜 ALexI: Artificial Legal Intelliegence for Swiss Jurisprudence",
)


if __name__ == "__main__":
    demo.launch(debug=True)