File size: 3,677 Bytes
5c60ed2 0bf6060 f8adcff 0635997 7c12ef4 d5c54ef 0635997 f846748 35f9142 60ac7f7 213b4a3 60ac7f7 f846748 0635997 8661441 d5c54ef f846748 c3ef985 f846748 5b9e4ac f846748 d2eb5fb c3ef985 7e5bae2 443f706 d2eb5fb 309b510 7cc0278 3366a71 a87ec38 d2eb5fb 3366a71 7cc0278 7e5bae2 3366a71 e061cc2 3366a71 9797856 7e5bae2 1cafcb9 a37b742 be65967 34f414b a2933d7 f846748 d1fef0d d2eb5fb f846748 c3ef985 f846748 cddcba8 f846748 cdec1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
from transformers import pipeline
from huggingface_hub import InferenceClient, login, snapshot_download
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
import os
import pandas as pd
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
HF_TOKEN=os.getenv('TOKEN')
login(HF_TOKEN)
#model = "meta-llama/Llama-3.2-1B-Instruct"
#model = "google/mt5-small"
model = "mistralai/Mistral-7B-Instruct-v0.3"
client = InferenceClient(model)
folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
vector_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
df = pd.read_csv("faiss_index/bger_cedh_db 1954-2024.csv")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
score,
):
messages = [{"role": "system", "content": system_message}]
print(system_message)
retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score})
documents = retriever.invoke(message)
spacer = " \n"
context = ""
for doc in documents:
case_text = df[df["case_url"] == doc.metadata["case_url"]].case_text.values[0]
context += "Case number: " + doc.metadata["case_nb"] + spacer
context += "Case date: " + doc.metadata["case_date"] + spacer
context += "Case url: " + doc.metadata["case_url"] + spacer
#context += "Case text: " + doc.page_content + spacer
context += "Case text: " + case_text + spacer
break
message = f"""
Context: Using the following context collected from various Federal Supreme Court of Switzerland and European Court of Human Rights cases:
{context}
Summarize these cases to the user and reference the sources, including the urls and dates..
Always answer the user using the language used in his question which was: {message}
"""
print(message)
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"),
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Score Threshold"),
],
description="# 📜 ALexI: Artificial Legal Intelligence for Swiss Jurisprudence",
)
if __name__ == "__main__":
demo.launch(debug=True) |