File size: 3,307 Bytes
5c60ed2 f8adcff 0635997 7c12ef4 0635997 f846748 cd7ca86 185d396 57b0d16 f846748 0635997 f846748 c3ef985 f846748 5b9e4ac f846748 d2eb5fb c3ef985 7e5bae2 443f706 d2eb5fb 309b510 d2eb5fb 7e5bae2 d2eb5fb e061cc2 7e5bae2 1cafcb9 a37b742 be65967 34f414b a2933d7 f846748 d1fef0d d2eb5fb f846748 c3ef985 f846748 cddcba8 f846748 cdec1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
from huggingface_hub import InferenceClient, login, snapshot_download
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
import os
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
login(token=os.getenv('TOKEN'))
client = InferenceClient("meta-llama/Llama-3.2-1B-Instruct")
#client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
vector_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
score,
):
messages = [{"role": "system", "content": system_message}]
print(system_message)
retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score})
documents = retriever.invoke(message)
spacer = " \n"
context = ""
for doc in documents:
context += "Case number: " + doc.metadata["case_nb"] + spacer
context += "Case date: " + doc.metadata["case_date"] + spacer
context += "Case url: " + doc.metadata["case_url"] + spacer
context += "Case chunk: " + doc.page_content + spacer
message = f"""
The user is aksing the following question: {message}.
Please answer in the same language as the message using the collected information from the following Swiss federal jurisprudence cases:
{context}
Please mention your sources in your answer, including the urls
"""
print(message)
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"),
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Score Threshold"),
],
description="# 📜 ALexI: Artificial Legal Intelligence for Swiss Jurisprudence",
)
if __name__ == "__main__":
demo.launch(debug=True) |