File size: 4,364 Bytes
5c60ed2
0bf6060
f8adcff
0635997
 
7c12ef4
d5c54ef
0635997
 
f846748
 
 
35f9142
 
60ac7f7
 
213b4a3
 
60ac7f7
 
f846748
0635997
 
 
 
836fc15
0635997
8661441
d5c54ef
f846748
 
 
 
 
 
 
c3ef985
f846748
e6d12c5
 
 
 
1001424
7e5bae2
443f706
d2eb5fb
309b510
a1c75cc
309b510
7cc0278
afce1f4
a87ec38
d2eb5fb
1eaeeb8
d2eb5fb
 
d897e9d
 
e6d12c5
 
 
 
 
 
2e0dbf3
e061cc2
e6d12c5
 
 
 
 
 
 
4e67249
e6d12c5
 
34f414b
 
 
 
 
 
a2933d7
f846748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d12c5
d2eb5fb
f846748
 
 
 
 
 
 
 
c3ef985
f846748
cddcba8
f846748
 
 
 
cdec1a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr
from transformers import pipeline
from huggingface_hub import InferenceClient, login, snapshot_download
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
import os
import pandas as pd


"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
HF_TOKEN=os.getenv('TOKEN')
login(HF_TOKEN)

#model = "meta-llama/Llama-3.2-1B-Instruct"
#model = "google/mt5-small"
model = "mistralai/Mistral-7B-Instruct-v0.3"

client = InferenceClient(model)

folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())

embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")

vector_db = FAISS.load_local("faiss_index_8k", embeddings, allow_dangerous_deserialization=True)

df = pd.read_csv("faiss_index/bger_cedh_db 1954-2024.csv")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    score,
):
    messages = [{"role": "system", "content": system_message}]

    print(system_message)
    
    retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score})
    documents = retriever.invoke(message)

    spacer = " \n"
    context = ""
    print(len(documents))

    for doc in documents:
        case_text = df[df["case_url"] == doc.metadata["case_url"]].case_text.values[0]

        context += "Case number: " + doc.metadata["case_nb"] + spacer
        context += "Case source: " + ("Swiss Federal Court" if doc.metadata["case_ref"] == "ATF" else "European Court of Human Rights") + spacer
        context += "Case date: " + doc.metadata["case_date"] + spacer
        context += "Case url: " + doc.metadata["case_url"] + spacer
        context += "Case text: " + doc.page_content + spacer
        #context += "Case text: " + case_text[:8000] + spacer
    
    
    message = f"""
A user is asking you the following question: {message}
Please answer the user in the same language that he used in his question using the following given context not prior knowledge.
Context:
The following case extracts have been found in either Swiss Federal Court or European Court of Human Rights cases and could fit the question:
{context}
Task:
If the retrieved context is not relevant cases or the issue has not been addressed within the context, just say "I can't find enough relevant information".
Don't make up an answer or give irrelevant information not requested by the user.
Otherwise, if relevant cases were found, start by summarizing these cases in the user's question's language and reference the sources, including the urls and dates.
Instructions:
Always answer the user using the language used in his question: {message}
    """
    
    print(message)

#    for val in history:
#        if val[0]:
#            messages.append({"role": "user", "content": val[0]})
#        if val[1]:
#            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"),
        gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
        gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Score Threshold"),
    ],
    description="# 📜 ALexI: Artificial Legal Intelligence for Swiss Jurisprudence",
)


if __name__ == "__main__":
    demo.launch(debug=True)