Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", lo
|
|
23 |
|
24 |
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
|
25 |
|
26 |
-
vector_db = FAISS.load_local("
|
27 |
|
28 |
df = pd.read_csv("faiss_index/bger_cedh_db 1954-2024.csv")
|
29 |
|
@@ -40,8 +40,8 @@ def respond(
|
|
40 |
|
41 |
print(system_message)
|
42 |
|
43 |
-
retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score})
|
44 |
-
|
45 |
documents = retriever.invoke(message)
|
46 |
|
47 |
spacer = " \n"
|
|
|
23 |
|
24 |
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
|
25 |
|
26 |
+
vector_db = FAISS.load_local("faiss_index_full", embeddings, allow_dangerous_deserialization=True)
|
27 |
|
28 |
df = pd.read_csv("faiss_index/bger_cedh_db 1954-2024.csv")
|
29 |
|
|
|
40 |
|
41 |
print(system_message)
|
42 |
|
43 |
+
# retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score})
|
44 |
+
retriever = vector_db.as_retriever(search_type="mmr")
|
45 |
documents = retriever.invoke(message)
|
46 |
|
47 |
spacer = " \n"
|