File size: 3,805 Bytes
c44809b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e400ad2
c44809b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import pandas as pd
import numpy as np
import torch
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from torch.utils.data import Dataset, DataLoader
import gradio as gr

true_news = pd.read_csv('True.csv')
fake_news = pd.read_csv('Fake.csv')

true_news['label'] = 1
fake_news['label'] = 0
df = pd.concat([true_news, fake_news], ignore_index=True)

import re
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')

def preprocess_text(text):
    # Remove special characters
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    # Convert to lowercase
    text = text.lower()
    # Remove stopwords
    stop_words = set(stopwords.words('english'))
    text = ' '.join([word for word in text.split() if word not in stop_words])
    return text

df['cleaned_text'] = df['text'].apply(preprocess_text)

vectorizer = TfidfVectorizer(max_features=5000)
X = vectorizer.fit_transform(df['cleaned_text']).toarray()
y = df['label'].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

class NewsDataset(Dataset):
    def __init__(self, X, y):
        self.X = torch.FloatTensor(X)
        self.y = torch.LongTensor(y)
    
    def __len__(self):
        return len(self.y)
    
    def __getitem__(self, idx):
        return self.X[idx], self.y[idx]

train_dataset = NewsDataset(X_train, y_train)
test_dataset = NewsDataset(X_test, y_test)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

class FakeNewsDetector(torch.nn.Module):
    def __init__(self, input_dim):
        super(FakeNewsDetector, self).__init__()
        self.fc1 = torch.nn.Linear(input_dim, 64)
        self.fc2 = torch.nn.Linear(64, 16)
        self.fc3 = torch.nn.Linear(16, 2)
        self.relu = torch.nn.ReLU()
    
    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

model = FakeNewsDetector(X_train.shape[1])
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

num_epochs = 10

for epoch in range(num_epochs):
    model.train()
    for batch_X, batch_y in train_loader:
        optimizer.zero_grad()
        outputs = model(batch_X)
        loss = criterion(outputs, batch_y)
        loss.backward()
        optimizer.step()
    
    # Evaluation
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_X, batch_y in test_loader:
            outputs = model(batch_X)
            _, predicted = torch.max(outputs.data, 1)
            total += batch_y.size(0)
            correct += (predicted == batch_y).sum().item()
    
    accuracy = 100 * correct / total
    print(f'Epoch [{epoch+1}/{num_epochs}], Accuracy: {accuracy:.2f}%')

def predict_fake_news(text):
    cleaned = preprocess_text(text)
    vectorized = vectorizer.transform([cleaned]).toarray()
    tensor = torch.FloatTensor(vectorized)
    
    model.eval()
    with torch.no_grad():
        output = model(tensor)
        _, predicted = torch.max(output.data, 1)
    
    return "Fake News" if predicted.item() == 0 else "True News"

# Example usage
example_text = "Scientists discover new planet capable of supporting life"
prediction = predict_fake_news(example_text)
print(f"Prediction: {prediction}")

# Gradio Interface
def gradio_interface(text):
    prediction = predict_fake_news(text)
    return prediction

iface = gr.Interface(
    fn=gradio_interface, 
    inputs="text", 
    outputs="text",
    title="Fake News Detector",
    description="Enter a news headline or text to predict whether it is Fake News or True News."
)

if __name__ == "__main__":
    iface.launch(share=True)