Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,74 +2,96 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
|
6 |
class TextGenerationBot:
|
7 |
def __init__(self, model_name="umairrrkhan/english-text-generation"):
|
8 |
self.model_name = model_name
|
9 |
self.model = None
|
10 |
self.tokenizer = None
|
11 |
-
self.history = []
|
12 |
self.setup_model()
|
13 |
|
14 |
def setup_model(self):
|
|
|
|
|
|
|
15 |
self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
16 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
17 |
|
18 |
-
#
|
19 |
if self.tokenizer.pad_token is None:
|
20 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
21 |
|
|
|
22 |
if self.model.config.pad_token_id is None:
|
23 |
-
self.model.config.pad_token_id = self.
|
24 |
|
25 |
def generate_text(self, input_text, temperature=0.7, max_length=100):
|
|
|
|
|
|
|
|
|
26 |
inputs = self.tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
27 |
|
28 |
-
|
29 |
-
'input_ids': inputs['input_ids'],
|
30 |
-
'max_length': max_length,
|
31 |
-
'num_return_sequences': 1,
|
32 |
-
'no_repeat_ngram_size': 2,
|
33 |
-
'temperature': temperature,
|
34 |
-
'top_p': 0.95,
|
35 |
-
'top_k': 50,
|
36 |
-
'do_sample': True,
|
37 |
-
'pad_token_id': self.tokenizer.pad_token_id,
|
38 |
-
'attention_mask': inputs['attention_mask']
|
39 |
-
}
|
40 |
-
|
41 |
with torch.no_grad():
|
42 |
-
outputs = self.model.generate(
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
|
46 |
-
def chat(self, message, history
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
bot_response = self.generate_text(message)
|
49 |
-
|
50 |
-
return
|
51 |
|
52 |
|
53 |
class ChatbotInterface:
|
54 |
def __init__(self):
|
55 |
self.bot = TextGenerationBot()
|
|
|
56 |
self.setup_interface()
|
57 |
|
58 |
def setup_interface(self):
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
fn=self.bot.chat,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
title="AI Text Generation Chatbot",
|
63 |
description="Chat with an AI model trained on English text. Try asking questions or providing prompts!",
|
64 |
examples=[
|
65 |
["Tell me a short story about a brave knight"],
|
66 |
["What are the benefits of exercise?"],
|
67 |
-
["Write a poem about nature"]
|
68 |
],
|
69 |
-
theme=gr.themes.Soft() # Optional
|
70 |
)
|
71 |
|
72 |
def launch(self, **kwargs):
|
|
|
|
|
|
|
73 |
self.interface.launch(**kwargs)
|
74 |
|
75 |
|
@@ -79,7 +101,7 @@ def main():
|
|
79 |
server_name="0.0.0.0",
|
80 |
server_port=7860,
|
81 |
share=True,
|
82 |
-
debug=True
|
83 |
)
|
84 |
|
85 |
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
|
|
5 |
class TextGenerationBot:
|
6 |
def __init__(self, model_name="umairrrkhan/english-text-generation"):
|
7 |
self.model_name = model_name
|
8 |
self.model = None
|
9 |
self.tokenizer = None
|
|
|
10 |
self.setup_model()
|
11 |
|
12 |
def setup_model(self):
|
13 |
+
"""
|
14 |
+
Load the model and tokenizer, and ensure pad_token and pad_token_id are set.
|
15 |
+
"""
|
16 |
self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
17 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
18 |
|
19 |
+
# Ensure tokenizer has a pad token
|
20 |
if self.tokenizer.pad_token is None:
|
21 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
|
23 |
+
# Ensure model config has pad_token_id
|
24 |
if self.model.config.pad_token_id is None:
|
25 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
26 |
|
27 |
def generate_text(self, input_text, temperature=0.7, max_length=100):
|
28 |
+
"""
|
29 |
+
Generate text based on user input.
|
30 |
+
"""
|
31 |
+
# Tokenize input
|
32 |
inputs = self.tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
33 |
|
34 |
+
# Generate output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
with torch.no_grad():
|
36 |
+
outputs = self.model.generate(
|
37 |
+
input_ids=inputs["input_ids"],
|
38 |
+
attention_mask=inputs["attention_mask"],
|
39 |
+
max_length=max_length,
|
40 |
+
temperature=temperature,
|
41 |
+
top_k=50,
|
42 |
+
top_p=0.95,
|
43 |
+
do_sample=True,
|
44 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
45 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
46 |
+
)
|
47 |
+
|
48 |
+
# Decode and return the generated text
|
49 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
|
51 |
+
def chat(self, message, history):
|
52 |
+
"""
|
53 |
+
Handle a chat conversation.
|
54 |
+
"""
|
55 |
+
if not history:
|
56 |
+
history = []
|
57 |
bot_response = self.generate_text(message)
|
58 |
+
history.append((message, bot_response))
|
59 |
+
return history, history
|
60 |
|
61 |
|
62 |
class ChatbotInterface:
|
63 |
def __init__(self):
|
64 |
self.bot = TextGenerationBot()
|
65 |
+
self.interface = None
|
66 |
self.setup_interface()
|
67 |
|
68 |
def setup_interface(self):
|
69 |
+
"""
|
70 |
+
Set up the Gradio interface for the chatbot.
|
71 |
+
"""
|
72 |
+
self.interface = gr.Interface(
|
73 |
fn=self.bot.chat,
|
74 |
+
inputs=[
|
75 |
+
gr.inputs.Textbox(label="Your Message"),
|
76 |
+
gr.inputs.State(label="Chat History"),
|
77 |
+
],
|
78 |
+
outputs=[
|
79 |
+
gr.outputs.Textbox(label="Bot Response"),
|
80 |
+
gr.outputs.State(label="Updated Chat History"),
|
81 |
+
],
|
82 |
title="AI Text Generation Chatbot",
|
83 |
description="Chat with an AI model trained on English text. Try asking questions or providing prompts!",
|
84 |
examples=[
|
85 |
["Tell me a short story about a brave knight"],
|
86 |
["What are the benefits of exercise?"],
|
87 |
+
["Write a poem about nature"],
|
88 |
],
|
|
|
89 |
)
|
90 |
|
91 |
def launch(self, **kwargs):
|
92 |
+
"""
|
93 |
+
Launch the Gradio interface.
|
94 |
+
"""
|
95 |
self.interface.launch(**kwargs)
|
96 |
|
97 |
|
|
|
101 |
server_name="0.0.0.0",
|
102 |
server_port=7860,
|
103 |
share=True,
|
104 |
+
debug=True,
|
105 |
)
|
106 |
|
107 |
|