umarigan commited on
Commit
b53c68b
·
verified ·
1 Parent(s): e20383d

Update Gradio_UI.py

Browse files
Files changed (1) hide show
  1. Gradio_UI.py +260 -84
Gradio_UI.py CHANGED
@@ -1,91 +1,267 @@
1
- from smolagents import CodeAgent, tool, OpenAIServerModel, FinalAnswerTool
2
- import datetime
3
- import pytz
4
- import yfinance as yf
 
 
 
 
 
 
 
 
 
 
 
 
5
  import os
6
- from Gradio_UI import GradioUI
7
-
8
- # Fetch the API key from the environment variable (if needed)
9
- API_KEY = os.getenv("KEY")
10
-
11
- @tool
12
- def get_currency_rate(currency_pair: str) -> str:
13
- """Fetches the current exchange rate for a given currency pair (e.g., 'USD-EUR').
14
- Args:
15
- currency_pair: The currency pair to query, formatted as 'BASE-CURRENCY'.
16
- """
17
- try:
18
- base, target = currency_pair.split("-")
19
- # Use yfinance to get the exchange rate
20
- ticker = f"{base}{target}=X" # Format for yfinance (e.g., "USDEUR=X")
21
- data = yf.Ticker(ticker)
22
- rate = data.history(period="1d")["Close"].iloc[-1]
23
- return f"Current {currency_pair} rate: {rate}"
24
- except Exception as e:
25
- return f"Error fetching rate: {str(e)}"
26
-
27
- @tool
28
- def get_current_time_in_timezone(timezone: str) -> str:
29
- """A tool that fetches the current local time in a specified timezone.
30
- Args:
31
- timezone: A string representing a valid timezone (e.g., 'America/New_York').
32
- """
33
- try:
34
- # Create timezone object
35
- tz = pytz.timezone(timezone)
36
- # Get current time in that timezone
37
- local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
38
- return f"The current local time in {timezone} is: {local_time}"
39
- except Exception as e:
40
- return f"Error fetching time for timezone '{timezone}': {str(e)}"
41
-
42
- # Set up the model
43
- model = OpenAIServerModel(
44
- model_id="deepseek-chat",
45
- api_base="https://api.deepseek.com",
46
- api_key=API_KEY
47
- )
48
-
49
- # Load tools
50
- final_answer = FinalAnswerTool()
51
- currency_tool = get_currency_rate
52
- time_tool = get_current_time_in_timezone
53
-
54
- # Create the agent
55
- agent = CodeAgent(
56
- model=model,
57
- tools=[currency_tool, time_tool, final_answer], # Include your tools here
58
- max_steps=3,
59
- verbosity_level=1
60
- )
61
-
62
- # Define example usage instructions
63
- example_usage = """
64
- ### Example Usage
65
- 1. **Currency Rate**: Ask for the exchange rate of a currency pair.
66
- - Example: "What is the current exchange rate for USD to JPY?"
67
- - Example: "Get the EUR to GBP rate."
68
-
69
- 2. **Current Time**: Ask for the current time in a specific timezone.
70
- - Example: "What is the current time in America/New_York?"
71
- - Example: "Get the time in Asia/Tokyo."
72
- """
73
-
74
- # Extend the GradioUI class to include the example usage
75
- class CustomGradioUI(GradioUI):
76
- def __init__(self, agent, description: str = "", **kwargs):
77
- super().__init__(agent, **kwargs)
78
- self.description = description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  def launch(self, **kwargs):
81
  import gradio as gr
82
 
83
  with gr.Blocks(fill_height=True) as demo:
84
- # Add the description as a Markdown component
85
- if self.description:
86
- gr.Markdown(self.description)
87
-
88
- # Add the existing chatbot and input components
89
  stored_messages = gr.State([])
90
  file_uploads_log = gr.State([])
91
  chatbot = gr.Chatbot(
@@ -116,5 +292,5 @@ class CustomGradioUI(GradioUI):
116
 
117
  demo.launch(debug=True, share=True, **kwargs)
118
 
119
- # Launch the Gradio UI with the example usage
120
- CustomGradioUI(agent, description=example_usage).launch()
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ import mimetypes
17
  import os
18
+ import re
19
+ import shutil
20
+ from typing import Optional
21
+
22
+ from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
23
+ from smolagents.agents import ActionStep, MultiStepAgent
24
+ from smolagents.memory import MemoryStep
25
+ from smolagents.utils import _is_package_available
26
+
27
+
28
+ def pull_messages_from_step(
29
+ step_log: MemoryStep,
30
+ ):
31
+ """Extract ChatMessage objects from agent steps with proper nesting"""
32
+ import gradio as gr
33
+
34
+ if isinstance(step_log, ActionStep):
35
+ # Output the step number
36
+ step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
37
+ yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
38
+
39
+ # First yield the thought/reasoning from the LLM
40
+ if hasattr(step_log, "model_output") and step_log.model_output is not None:
41
+ # Clean up the LLM output
42
+ model_output = step_log.model_output.strip()
43
+ # Remove any trailing <end_code> and extra backticks, handling multiple possible formats
44
+ model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
45
+ model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
46
+ model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
47
+ model_output = model_output.strip()
48
+ yield gr.ChatMessage(role="assistant", content=model_output)
49
+
50
+ # For tool calls, create a parent message
51
+ if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
52
+ first_tool_call = step_log.tool_calls[0]
53
+ used_code = first_tool_call.name == "python_interpreter"
54
+ parent_id = f"call_{len(step_log.tool_calls)}"
55
+
56
+ # Tool call becomes the parent message with timing info
57
+ # First we will handle arguments based on type
58
+ args = first_tool_call.arguments
59
+ if isinstance(args, dict):
60
+ content = str(args.get("answer", str(args)))
61
+ else:
62
+ content = str(args).strip()
63
+
64
+ if used_code:
65
+ # Clean up the content by removing any end code tags
66
+ content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
67
+ content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
68
+ content = content.strip()
69
+ if not content.startswith("```python"):
70
+ content = f"```python\n{content}\n```"
71
+
72
+ parent_message_tool = gr.ChatMessage(
73
+ role="assistant",
74
+ content=content,
75
+ metadata={
76
+ "title": f"🛠️ Used tool {first_tool_call.name}",
77
+ "id": parent_id,
78
+ "status": "pending",
79
+ },
80
+ )
81
+ yield parent_message_tool
82
+
83
+ # Nesting execution logs under the tool call if they exist
84
+ if hasattr(step_log, "observations") and (
85
+ step_log.observations is not None and step_log.observations.strip()
86
+ ): # Only yield execution logs if there's actual content
87
+ log_content = step_log.observations.strip()
88
+ if log_content:
89
+ log_content = re.sub(r"^Execution logs:\s*", "", log_content)
90
+ yield gr.ChatMessage(
91
+ role="assistant",
92
+ content=f"{log_content}",
93
+ metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
94
+ )
95
+
96
+ # Nesting any errors under the tool call
97
+ if hasattr(step_log, "error") and step_log.error is not None:
98
+ yield gr.ChatMessage(
99
+ role="assistant",
100
+ content=str(step_log.error),
101
+ metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
102
+ )
103
+
104
+ # Update parent message metadata to done status without yielding a new message
105
+ parent_message_tool.metadata["status"] = "done"
106
+
107
+ # Handle standalone errors but not from tool calls
108
+ elif hasattr(step_log, "error") and step_log.error is not None:
109
+ yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
110
+
111
+ # Calculate duration and token information
112
+ step_footnote = f"{step_number}"
113
+ if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
114
+ token_str = (
115
+ f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
116
+ )
117
+ step_footnote += token_str
118
+ if hasattr(step_log, "duration"):
119
+ step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
120
+ step_footnote += step_duration
121
+ step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
122
+ yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
123
+ yield gr.ChatMessage(role="assistant", content="-----")
124
+
125
+
126
+ def stream_to_gradio(
127
+ agent,
128
+ task: str,
129
+ reset_agent_memory: bool = False,
130
+ additional_args: Optional[dict] = None,
131
+ ):
132
+ """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
133
+ if not _is_package_available("gradio"):
134
+ raise ModuleNotFoundError(
135
+ "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
136
+ )
137
+ import gradio as gr
138
+
139
+ total_input_tokens = 0
140
+ total_output_tokens = 0
141
+
142
+ for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
143
+ # Track tokens if model provides them
144
+ if hasattr(agent.model, "last_input_token_count"):
145
+ total_input_tokens += agent.model.last_input_token_count
146
+ total_output_tokens += agent.model.last_output_token_count
147
+ if isinstance(step_log, ActionStep):
148
+ step_log.input_token_count = agent.model.last_input_token_count
149
+ step_log.output_token_count = agent.model.last_output_token_count
150
+
151
+ for message in pull_messages_from_step(
152
+ step_log,
153
+ ):
154
+ yield message
155
+
156
+ final_answer = step_log # Last log is the run's final_answer
157
+ final_answer = handle_agent_output_types(final_answer)
158
+
159
+ if isinstance(final_answer, AgentText):
160
+ yield gr.ChatMessage(
161
+ role="assistant",
162
+ content=f"**Final answer:**\n{final_answer.to_string()}\n",
163
+ )
164
+ elif isinstance(final_answer, AgentImage):
165
+ yield gr.ChatMessage(
166
+ role="assistant",
167
+ content={"path": final_answer.to_string(), "mime_type": "image/png"},
168
+ )
169
+ elif isinstance(final_answer, AgentAudio):
170
+ yield gr.ChatMessage(
171
+ role="assistant",
172
+ content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
173
+ )
174
+ else:
175
+ yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
176
+
177
+
178
+ class GradioUI:
179
+ """A one-line interface to launch your agent in Gradio"""
180
+
181
+ def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
182
+ if not _is_package_available("gradio"):
183
+ raise ModuleNotFoundError(
184
+ "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
185
+ )
186
+ self.agent = agent
187
+ self.file_upload_folder = file_upload_folder
188
+ if self.file_upload_folder is not None:
189
+ if not os.path.exists(file_upload_folder):
190
+ os.mkdir(file_upload_folder)
191
+
192
+ def interact_with_agent(self, prompt, messages):
193
+ import gradio as gr
194
+
195
+ messages.append(gr.ChatMessage(role="user", content=prompt))
196
+ yield messages
197
+ for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
198
+ messages.append(msg)
199
+ yield messages
200
+ yield messages
201
+
202
+ def upload_file(
203
+ self,
204
+ file,
205
+ file_uploads_log,
206
+ allowed_file_types=[
207
+ "application/pdf",
208
+ "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
209
+ "text/plain",
210
+ ],
211
+ ):
212
+ """
213
+ Handle file uploads, default allowed types are .pdf, .docx, and .txt
214
+ """
215
+ import gradio as gr
216
+
217
+ if file is None:
218
+ return gr.Textbox("No file uploaded", visible=True), file_uploads_log
219
+
220
+ try:
221
+ mime_type, _ = mimetypes.guess_type(file.name)
222
+ except Exception as e:
223
+ return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
224
+
225
+ if mime_type not in allowed_file_types:
226
+ return gr.Textbox("File type disallowed", visible=True), file_uploads_log
227
+
228
+ # Sanitize file name
229
+ original_name = os.path.basename(file.name)
230
+ sanitized_name = re.sub(
231
+ r"[^\w\-.]", "_", original_name
232
+ ) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
233
+
234
+ type_to_ext = {}
235
+ for ext, t in mimetypes.types_map.items():
236
+ if t not in type_to_ext:
237
+ type_to_ext[t] = ext
238
+
239
+ # Ensure the extension correlates to the mime type
240
+ sanitized_name = sanitized_name.split(".")[:-1]
241
+ sanitized_name.append("" + type_to_ext[mime_type])
242
+ sanitized_name = "".join(sanitized_name)
243
+
244
+ # Save the uploaded file to the specified folder
245
+ file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
246
+ shutil.copy(file.name, file_path)
247
+
248
+ return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
249
+
250
+ def log_user_message(self, text_input, file_uploads_log):
251
+ return (
252
+ text_input
253
+ + (
254
+ f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
255
+ if len(file_uploads_log) > 0
256
+ else ""
257
+ ),
258
+ "",
259
+ )
260
 
261
  def launch(self, **kwargs):
262
  import gradio as gr
263
 
264
  with gr.Blocks(fill_height=True) as demo:
 
 
 
 
 
265
  stored_messages = gr.State([])
266
  file_uploads_log = gr.State([])
267
  chatbot = gr.Chatbot(
 
292
 
293
  demo.launch(debug=True, share=True, **kwargs)
294
 
295
+
296
+ __all__ = ["stream_to_gradio", "GradioUI"]