Spaces:
Runtime error
Runtime error
File size: 6,567 Bytes
e6bfe5c d25abcf ae36be9 e6bfe5c f436055 ae36be9 5f73d00 8c045a9 5f73d00 861ad26 8bd5af2 861ad26 8bd5af2 f436055 81805e8 e6bfe5c 81805e8 1b711d9 c480c1f 8bb7ed4 c480c1f f436055 c480c1f f436055 c480c1f 8c045a9 3547909 f436055 e6bfe5c f436055 1c9f94a f436055 81805e8 4874aa0 8c045a9 f436055 c480c1f 8ab4c34 f436055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import streamlit as st
import pandas as pd
import spacy
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import PyPDF2
import docx
import io
def chunk_text(text, chunk_size=128):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > chunk_size:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
else:
current_chunk.append(word)
current_length += len(word) + 1
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
st.set_page_config(layout="wide")
# Function to read text from uploaded file
def read_file(file):
if file.type == "text/plain":
return file.getvalue().decode("utf-8")
elif file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
return " ".join(page.extract_text() for page in pdf_reader.pages)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
doc = docx.Document(io.BytesIO(file.getvalue()))
return " ".join(paragraph.text for paragraph in doc.paragraphs)
else:
st.error("Unsupported file type")
return None
st.title("Turkish NER Models Testing")
model_list = [
'girayyagmur/bert-base-turkish-ner-cased',
'savasy/bert-base-turkish-ner-cased',
'xlm-roberta-large-finetuned-conll03-english',
'asahi417/tner-xlm-roberta-base-ontonotes5'
]
st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")
# Determine aggregation strategy
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"
st.subheader("Select Text Input Method")
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
if input_method == "Write or Paste New Text":
input_text = st.text_area('Write or Paste Text Below', value="", height=128)
else:
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
if uploaded_file is not None:
input_text = read_file(uploaded_file)
if input_text:
st.text_area("Extracted Text", input_text, height=128)
else:
input_text = ""
@st.cache_resource
def setModel(model_checkpoint, aggregation):
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
@st.cache_resource
def entity_comb(output):
output_comb = []
for ind, entity in enumerate(output):
if ind == 0:
output_comb.append(entity)
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
output_comb[-1]["word"] += output[ind]["word"]
output_comb[-1]["end"] = output[ind]["end"]
else:
output_comb.append(entity)
return output_comb
def create_masked_text(input_text, entities):
# Create the mask dictionary
mask_dict = create_mask_dict(entities)
masked_text = input_text
for entity in sorted(entities, key=lambda x: x['start'], reverse=True):
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
# Replace the entity with its entity group from the mask dictionary
masked_text = (
masked_text[:entity['start']] +
f"<{mask_dict[entity['word']]}> " + # Use angle brackets for clarity
masked_text[entity['end']:]
)
return masked_text
def create_masked_text(input_text, entities, mask_dict):
masked_text = input_text
for entity in sorted(entities, key=lambda x: x['start'], reverse=True):
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
masked_text = masked_text[:entity['start']] + mask_dict[entity['word']] + masked_text[entity['end']:]
return masked_text
Run_Button = st.button("Run")
if Run_Button and input_text:
ner_pipeline = setModel(model_checkpoint, aggregation)
# Chunk the input text
chunks = chunk_text(input_text)
# Process each chunk
all_outputs = []
for i, chunk in enumerate(chunks):
output = ner_pipeline(chunk)
# Adjust start and end positions for entities in chunks after the first
if i > 0:
offset = len(' '.join(chunks[:i])) + 1
for entity in output:
entity['start'] += offset
entity['end'] += offset
all_outputs.extend(output)
# Combine entities
output_comb = entity_comb(all_outputs)
# Create mask dictionary
mask_dict = create_mask_dict(output_comb)
masked_text = create_masked_text(input_text, output_comb, mask_dict)
# Apply masking and add masked_word column
for entity in output_comb:
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
entity['masked_word'] = mask_dict.get(entity['word'], entity['word'])
else:
entity['masked_word'] = entity['word']
print("output_comb", output_comb)
#df = pd.DataFrame.from_dict(output_comb)
#cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
#df_final = df[cols_to_keep].loc[:,~df.columns.duplicated()].copy()
#st.subheader("Recognized Entities")
#st.dataframe(df_final)
# Spacy display logic with entity numbering
spacy_display = {"ents": [], "text": input_text, "title": None}
for entity in output_comb:
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
label = f"{entity['entity_group']}_{mask_dict[entity['word']].split('_')[1]}"
else:
label = entity['entity_group']
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": label})
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
st.write(html, unsafe_allow_html=True)
st.subheader("Masking Dictionary")
st.json(mask_dict)
st.subheader("Masked Text Preview")
st.text(masked_text) |