File size: 5,902 Bytes
e6bfe5c
 
d25abcf
ae36be9
 
 
 
e6bfe5c
1b711d9
 
ae36be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6bfe5c
ae36be9
bc06b7e
ae36be9
 
e6bfe5c
 
 
 
ae36be9
 
 
 
 
 
 
 
 
f474e98
e6bfe5c
f474e98
 
a834bc3
f474e98
 
ae36be9
4874aa0
ae36be9
 
f474e98
4874aa0
ae36be9
f474e98
ae36be9
 
1eab2d6
f474e98
 
e6bfe5c
f474e98
ae36be9
 
 
 
 
 
 
 
 
 
e6bfe5c
f193a60
e6bfe5c
a834bc3
 
e6bfe5c
5b3d11c
f193a60
d84f151
 
 
 
ae36be9
f193a60
1b711d9
4874aa0
 
 
 
32e294e
3598e61
 
4874aa0
 
1b711d9
ae36be9
1b711d9
e6bfe5c
8961cd3
ae36be9
1b711d9
 
 
 
 
4874aa0
443b5af
e6bfe5c
 
d25abcf
e6bfe5c
d25abcf
 
 
 
 
 
 
4874aa0
bc06b7e
 
c558c48
 
 
 
a931c89
c558c48
 
 
 
ae36be9
d25abcf
ae36be9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import streamlit as st
import pandas as pd
import spacy
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import PyPDF2
import docx
import io

st.set_page_config(layout="wide")

# Function to read text from uploaded file
def read_file(file):
    if file.type == "text/plain":
        return file.getvalue().decode("utf-8")
    elif file.type == "application/pdf":
        pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
        return " ".join(page.extract_text() for page in pdf_reader.pages)
    elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        doc = docx.Document(io.BytesIO(file.getvalue()))
        return " ".join(paragraph.text for paragraph in doc.paragraphs)
    else:
        st.error("Unsupported file type")
        return None

# Rest of your code remains the same
example_list = [
    "Mustafa Kemal Atatürk 1919 yılında Samsun'a çıktı.",
    """Mustafa Kemal Atatürk, Türk asker, devlet adamı ve Türkiye Cumhuriyeti'nin kurucusudur.
    # ... (rest of the example text)
    """
]

st.title("Demo for Turkish NER Models")

model_list = [
    'akdeniz27/bert-base-turkish-cased-ner',
    'akdeniz27/convbert-base-turkish-cased-ner',
    'girayyagmur/bert-base-turkish-ner-cased',
    'FacebookAI/xlm-roberta-large',
    'savasy/bert-base-turkish-ner-cased',
    'xlm-roberta-large-finetuned-conll03-english',
    'asahi417/tner-xlm-roberta-base-ontonotes5'
]

st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)

st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
st.sidebar.write("")

if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"]:
    aggregation = "simple"
    if model_checkpoint != "akdeniz27/xlm-roberta-base-turkish-ner":
        st.sidebar.write("The selected NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta pretrained language model.")
else:
    aggregation = "first"

st.subheader("Select Text Input Method")
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text', 'Upload File'))

if input_method == 'Select from Examples':
    selected_text = st.selectbox('Select Text from List', example_list, index=0, key=1)
    input_text = st.text_area("Selected Text", selected_text, height=128, max_chars=None, key=2)
elif input_method == "Write or Paste New Text":
    input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None, key=2)
else:
    uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
    if uploaded_file is not None:
        input_text = read_file(uploaded_file)
        if input_text:
            st.text_area("Extracted Text", input_text, height=128, max_chars=None, key=2)
    else:
        input_text = ""

# Rest of your functions (setModel, get_html, entity_comb) remain the same

@st.cache_resource
def setModel(model_checkpoint, aggregation):
    model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)

@st.cache_resource
def get_html(html: str):
    WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
    html = html.replace("\n", " ")
    return WRAPPER.format(html)

@st.cache_resource
def entity_comb(output):
    output_comb = []
    for ind, entity in enumerate(output):
        if ind == 0:
            output_comb.append(entity)
        elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
            output_comb[-1]["word"] = output_comb[-1]["word"] + output[ind]["word"]
            output_comb[-1]["end"] = output[ind]["end"]
        else:
            output_comb.append(entity)
    return output_comb

Run_Button = st.button("Run", key=None)

if Run_Button and input_text != "":
    # Your existing processing code remains the same
    ner_pipeline = setModel(model_checkpoint, aggregation)
    output = ner_pipeline(input_text)
    
    output_comb = entity_comb(output)
    
    df = pd.DataFrame.from_dict(output_comb)
    cols_to_keep = ['word','entity_group','score','start','end']
    df_final = df[cols_to_keep]
    
    st.subheader("Recognized Entities")
    st.dataframe(df_final)

    st.subheader("Spacy Style Display")
    spacy_display = {}
    spacy_display["ents"] = []
    spacy_display["text"] = input_text
    spacy_display["title"] = None

    for entity in output_comb:
        spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
        
    tner_entity_list = ["person", "group", "facility", "organization", "geopolitical area", "location", "product", "event", "work of art", "law", "language", "date", "time", "percent", "money", "quantity", "ordinal number", "cardinal number"]
    spacy_entity_list = ["PERSON", "NORP", "FAC", "ORG", "GPE", "LOC", "PRODUCT", "EVENT", "WORK_OF_ART", "LAW", "LANGUAGE", "DATE", "TIME", "PERCENT", "MONEY", "QUANTITY", "ORDINAL", "CARDINAL", "MISC"]
    
    for ent in spacy_display["ents"]:
        if model_checkpoint == "asahi417/tner-xlm-roberta-base-ontonotes5":
            ent["label"] = spacy_entity_list[tner_entity_list.index(ent["label"])]
        else:
            if ent["label"] == "PER": ent["label"] = "PERSON"
    
    html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True, options={"ents": spacy_entity_list})
    style = "<style>mark.entity { display: inline-block }</style>"
    st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)