Spaces:
Runtime error
Runtime error
File size: 4,693 Bytes
e6bfe5c d25abcf ae36be9 e6bfe5c c480c1f 1b711d9 ae36be9 2856362 e6bfe5c ae36be9 f474e98 e6bfe5c f474e98 a834bc3 81805e8 f474e98 81805e8 c480c1f ae36be9 f474e98 2856362 81805e8 a34a8fb ae36be9 81805e8 ae36be9 f193a60 e6bfe5c a834bc3 e6bfe5c 5b3d11c f193a60 1b711d9 4874aa0 32e294e 81805e8 3598e61 4874aa0 1b711d9 ae36be9 81805e8 e6bfe5c 81805e8 1b711d9 c480c1f 8bb7ed4 c480c1f 4874aa0 81805e8 e6bfe5c d25abcf e6bfe5c c480c1f 81805e8 4874aa0 bc06b7e c480c1f 81805e8 8bb7ed4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import streamlit as st
import pandas as pd
import spacy
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import PyPDF2
import docx
import io
def chunk_text(text, chunk_size=128):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > chunk_size:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
else:
current_chunk.append(word)
current_length += len(word) + 1
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
st.set_page_config(layout="wide")
# Function to read text from uploaded file
def read_file(file):
if file.type == "text/plain":
return file.getvalue().decode("utf-8")
elif file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
return " ".join(page.extract_text() for page in pdf_reader.pages)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
doc = docx.Document(io.BytesIO(file.getvalue()))
return " ".join(paragraph.text for paragraph in doc.paragraphs)
else:
st.error("Unsupported file type")
return None
st.title("Turkish NER Models Testing")
model_list = [
'girayyagmur/bert-base-turkish-ner-cased',
'savasy/bert-base-turkish-ner-cased',
'xlm-roberta-large-finetuned-conll03-english',
'asahi417/tner-xlm-roberta-base-ontonotes5'
]
st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")
# Determine aggregation strategy
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"
st.subheader("Select Text Input Method")
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
if input_method == "Write or Paste New Text":
input_text = st.text_area('Write or Paste Text Below', value="", height=128)
else:
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
if uploaded_file is not None:
input_text = read_file(uploaded_file)
if input_text:
st.text_area("Extracted Text", input_text, height=128)
else:
input_text = ""
@st.cache_resource
def setModel(model_checkpoint, aggregation):
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
@st.cache_resource
def entity_comb(output):
output_comb = []
for ind, entity in enumerate(output):
if ind == 0:
output_comb.append(entity)
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
output_comb[-1]["word"] += output[ind]["word"]
output_comb[-1]["end"] = output[ind]["end"]
else:
output_comb.append(entity)
return output_comb
Run_Button = st.button("Run")
if Run_Button and input_text:
ner_pipeline = setModel(model_checkpoint, aggregation)
# Chunk the input text
chunks = chunk_text(input_text)
# Process each chunk
all_outputs = []
for i, chunk in enumerate(chunks):
output = ner_pipeline(chunk)
# Adjust start and end positions for entities in chunks after the first
if i > 0:
offset = len(' '.join(chunks[:i])) + 1
for entity in output:
entity['start'] += offset
entity['end'] += offset
all_outputs.extend(output)
# Combine entities
output_comb = entity_comb(all_outputs)
df = pd.DataFrame.from_dict(output_comb)
cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
df_final = df[cols_to_keep]
st.subheader("Recognized Entities")
st.dataframe(df_final)
# Spacy display logic
spacy_display = {"ents": [], "text": input_text, "title": None}
for entity in output_comb:
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
st.write(html, unsafe_allow_html=True) |