File size: 4,693 Bytes
e6bfe5c
 
d25abcf
ae36be9
 
 
 
e6bfe5c
c480c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b711d9
 
ae36be9
 
 
 
 
 
 
 
 
 
 
 
 
 
2856362
e6bfe5c
ae36be9
 
 
 
 
 
f474e98
e6bfe5c
f474e98
 
a834bc3
81805e8
f474e98
81805e8
c480c1f
ae36be9
f474e98
2856362
 
 
81805e8
a34a8fb
ae36be9
 
 
 
81805e8
ae36be9
 
 
f193a60
e6bfe5c
a834bc3
 
e6bfe5c
5b3d11c
f193a60
1b711d9
4874aa0
 
 
 
32e294e
81805e8
3598e61
4874aa0
 
1b711d9
ae36be9
81805e8
e6bfe5c
81805e8
1b711d9
 
c480c1f
 
 
 
 
 
8bb7ed4
c480c1f
 
 
 
 
 
 
 
 
 
 
 
 
4874aa0
81805e8
e6bfe5c
 
d25abcf
e6bfe5c
c480c1f
81805e8
 
4874aa0
bc06b7e
c480c1f
81805e8
8bb7ed4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import pandas as pd
import spacy
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import PyPDF2
import docx
import io

def chunk_text(text, chunk_size=128):
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0

    for word in words:
        if current_length + len(word) + 1 > chunk_size:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
        else:
            current_chunk.append(word)
            current_length += len(word) + 1

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks

st.set_page_config(layout="wide")

# Function to read text from uploaded file
def read_file(file):
    if file.type == "text/plain":
        return file.getvalue().decode("utf-8")
    elif file.type == "application/pdf":
        pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
        return " ".join(page.extract_text() for page in pdf_reader.pages)
    elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        doc = docx.Document(io.BytesIO(file.getvalue()))
        return " ".join(paragraph.text for paragraph in doc.paragraphs)
    else:
        st.error("Unsupported file type")
        return None

st.title("Turkish NER Models Testing")

model_list = [
    'girayyagmur/bert-base-turkish-ner-cased',
    'savasy/bert-base-turkish-ner-cased',
    'xlm-roberta-large-finetuned-conll03-english',
    'asahi417/tner-xlm-roberta-base-ontonotes5'
]

st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)

st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")

# Determine aggregation strategy
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"

st.subheader("Select Text Input Method")
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))

if input_method == "Write or Paste New Text":
    input_text = st.text_area('Write or Paste Text Below', value="", height=128)
else:
    uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
    if uploaded_file is not None:
        input_text = read_file(uploaded_file)
        if input_text:
            st.text_area("Extracted Text", input_text, height=128)
    else:
        input_text = ""

@st.cache_resource
def setModel(model_checkpoint, aggregation):
    model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)

@st.cache_resource
def entity_comb(output):
    output_comb = []
    for ind, entity in enumerate(output):
        if ind == 0:
            output_comb.append(entity)
        elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
            output_comb[-1]["word"] += output[ind]["word"]
            output_comb[-1]["end"] = output[ind]["end"]
        else:
            output_comb.append(entity)
    return output_comb

Run_Button = st.button("Run")

if Run_Button and input_text:
    ner_pipeline = setModel(model_checkpoint, aggregation)
    
    # Chunk the input text
    chunks = chunk_text(input_text)
    
    # Process each chunk
    all_outputs = []
    for i, chunk in enumerate(chunks):
        output = ner_pipeline(chunk)
        
        # Adjust start and end positions for entities in chunks after the first
        if i > 0:
            offset = len(' '.join(chunks[:i])) + 1
            for entity in output:
                entity['start'] += offset
                entity['end'] += offset
        
        all_outputs.extend(output)
    
    # Combine entities
    output_comb = entity_comb(all_outputs)
    
    df = pd.DataFrame.from_dict(output_comb)
    cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
    df_final = df[cols_to_keep]
    
    st.subheader("Recognized Entities")
    st.dataframe(df_final)
    
    # Spacy display logic
    spacy_display = {"ents": [], "text": input_text, "title": None}
    for entity in output_comb:
        spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
    
    html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
    st.write(html, unsafe_allow_html=True)