Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import spacy | |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer | |
import PyPDF2 | |
import docx | |
import io | |
import re | |
# ... [Previous functions remain unchanged] ... | |
def create_mask_dict(entities): | |
mask_dict = {} | |
entity_counters = {} | |
for entity in entities: | |
if entity['entity_group'] not in ['CARDINAL', 'EVENT']: | |
if entity['word'] not in mask_dict: | |
if entity['entity_group'] not in entity_counters: | |
entity_counters[entity['entity_group']] = 1 | |
else: | |
entity_counters[entity['entity_group']] += 1 | |
mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}" | |
return mask_dict | |
def create_masked_text(input_text, mask_dict): | |
masked_text = input_text | |
for word, mask in sorted(mask_dict.items(), key=lambda x: len(x[0]), reverse=True): | |
masked_text = re.sub(r'\b' + re.escape(word) + r'\b', mask, masked_text) | |
return masked_text | |
Run_Button = st.button("Run") | |
if Run_Button and input_text: | |
ner_pipeline = setModel(model_checkpoint, aggregation) | |
# Chunk the input text | |
chunks = chunk_text(input_text) | |
# Process each chunk | |
all_outputs = [] | |
for i, chunk in enumerate(chunks): | |
output = ner_pipeline(chunk) | |
# Adjust start and end positions for entities in chunks after the first | |
if i > 0: | |
offset = len(' '.join(chunks[:i])) + 1 | |
for entity in output: | |
entity['start'] += offset | |
entity['end'] += offset | |
all_outputs.extend(output) | |
# Combine entities | |
output_comb = entity_comb(all_outputs) | |
# Create mask dictionary | |
mask_dict = create_mask_dict(output_comb) | |
# Create masked text | |
masked_text = create_masked_text(input_text, mask_dict) | |
st.subheader("Masked Text") | |
st.text(masked_text) | |
st.subheader("Masking Dictionary") | |
st.json(mask_dict) | |
# Create a DataFrame for display | |
df = pd.DataFrame([(word, mask) for word, mask in mask_dict.items()], columns=['Original', 'Masked']) | |
st.subheader("Masking Table") | |
st.dataframe(df) | |
# Optional: Display original text with highlights | |
st.subheader("Original Text with Highlights") | |
spacy_display = {"ents": [], "text": input_text, "title": None} | |
for entity in output_comb: | |
if entity['entity_group'] not in ['CARDINAL', 'EVENT']: | |
label = mask_dict[entity['word']] | |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": label}) | |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True) | |
st.write(html, unsafe_allow_html=True) |