import streamlit as st import pandas as pd import spacy from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer import PyPDF2 import docx import io st.set_page_config(layout="wide") # Function to read text from uploaded file def read_file(file): if file.type == "text/plain": return file.getvalue().decode("utf-8") elif file.type == "application/pdf": pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue())) return " ".join(page.extract_text() for page in pdf_reader.pages) elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": doc = docx.Document(io.BytesIO(file.getvalue())) return " ".join(paragraph.text for paragraph in doc.paragraphs) else: st.error("Unsupported file type") return None # Rest of your code remains the same example_list = [ "Mustafa Kemal Atatürk 1919 yılında Samsun'a çıktı.", """Mustafa Kemal Atatürk, Türk asker, devlet adamı ve Türkiye Cumhuriyeti'nin kurucusudur. # ... (rest of the example text) """ ] st.title("Demo for Turkish NER Models") model_list = [ 'akdeniz27/bert-base-turkish-cased-ner', 'akdeniz27/convbert-base-turkish-cased-ner', 'girayyagmur/bert-base-turkish-ner-cased', 'FacebookAI/xlm-roberta-large', 'savasy/bert-base-turkish-ner-cased', 'xlm-roberta-large-finetuned-conll03-english', 'asahi417/tner-xlm-roberta-base-ontonotes5' ] st.sidebar.header("Select NER Model") model_checkpoint = st.sidebar.radio("", model_list) st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/") st.sidebar.write("") if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"]: aggregation = "simple" if model_checkpoint != "akdeniz27/xlm-roberta-base-turkish-ner": st.sidebar.write("The selected NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta pretrained language model.") else: aggregation = "first" st.subheader("Select Text Input Method") input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text', 'Upload File')) if input_method == 'Select from Examples': selected_text = st.selectbox('Select Text from List', example_list, index=0, key=1) input_text = st.text_area("Selected Text", selected_text, height=128, max_chars=None, key=2) elif input_method == "Write or Paste New Text": input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None, key=2) else: uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"]) if uploaded_file is not None: input_text = read_file(uploaded_file) if input_text: st.text_area("Extracted Text", input_text, height=128, max_chars=None, key=2) else: input_text = "" # Rest of your functions (setModel, get_html, entity_comb) remain the same @st.cache_resource def setModel(model_checkpoint, aggregation): model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation) @st.cache_resource def get_html(html: str): WRAPPER = """
{}
""" html = html.replace("\n", " ") return WRAPPER.format(html) @st.cache_resource def entity_comb(output): output_comb = [] for ind, entity in enumerate(output): if ind == 0: output_comb.append(entity) elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]: output_comb[-1]["word"] = output_comb[-1]["word"] + output[ind]["word"] output_comb[-1]["end"] = output[ind]["end"] else: output_comb.append(entity) return output_comb Run_Button = st.button("Run", key=None) if Run_Button and input_text != "": # Your existing processing code remains the same ner_pipeline = setModel(model_checkpoint, aggregation) output = ner_pipeline(input_text) output_comb = entity_comb(output) df = pd.DataFrame.from_dict(output_comb) cols_to_keep = ['word','entity_group','score','start','end'] df_final = df[cols_to_keep] st.subheader("Recognized Entities") st.dataframe(df_final) st.subheader("Spacy Style Display") spacy_display = {} spacy_display["ents"] = [] spacy_display["text"] = input_text spacy_display["title"] = None for entity in output_comb: spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]}) tner_entity_list = ["person", "group", "facility", "organization", "geopolitical area", "location", "product", "event", "work of art", "law", "language", "date", "time", "percent", "money", "quantity", "ordinal number", "cardinal number"] spacy_entity_list = ["PERSON", "NORP", "FAC", "ORG", "GPE", "LOC", "PRODUCT", "EVENT", "WORK_OF_ART", "LAW", "LANGUAGE", "DATE", "TIME", "PERCENT", "MONEY", "QUANTITY", "ORDINAL", "CARDINAL", "MISC"] for ent in spacy_display["ents"]: if model_checkpoint == "asahi417/tner-xlm-roberta-base-ontonotes5": ent["label"] = spacy_entity_list[tner_entity_list.index(ent["label"])] else: if ent["label"] == "PER": ent["label"] = "PERSON" html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True, options={"ents": spacy_entity_list}) style = "" st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)