ykl7 commited on
Commit
0b633df
·
1 Parent(s): da4d7e6

test retriever post requests

Browse files
Files changed (3) hide show
  1. app.py +35 -14
  2. prompts.py +16 -0
  3. requirements.txt +2 -1
app.py CHANGED
@@ -4,6 +4,7 @@ import time
4
  import hmac
5
  import os
6
  import json
 
7
  from llm_reasoner import LLMReasoner
8
  from prompts import templates
9
  from typing import Any
@@ -58,7 +59,7 @@ def select_models():
58
  """Returns only when a valid option is selected from both dropdowns."""
59
 
60
  #placeholders
61
- retriever_options = ["Choose one...", "Simple", "Trained", "No Retriever"]
62
  reasoner_options = ["Choose one...", "Claude Sonnet", "GPT-4o", "o3-mini"]
63
 
64
  #selectboxes
@@ -134,12 +135,36 @@ def retriever(query: str, selected_retriever: str):
134
  placeholder = st.empty()
135
  text=""
136
 
137
- if selected_retriever == "Simple":
138
- message = "Using the simple retriever to search for documents related to your query..."
139
- elif selected_retriever == "Trained":
140
- message = "Using the trained retriever to fetch detailed documents relevant to your query..."
 
 
 
 
 
141
  else:
142
  message = "No retriever selected. Skipping document retrieval."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
  for chunk in message.split():
145
  text += chunk + " "
@@ -148,7 +173,7 @@ def retriever(query: str, selected_retriever: str):
148
  placeholder.markdown(text + "▌")
149
  placeholder.markdown(text)
150
  # You could return retrieved info here.
151
- return message
152
 
153
  def reasoner(query: str, documents: list[str], llm_client: Any):
154
  """Simulate a 'reasoner' step, thinking about how to answer."""
@@ -166,23 +191,20 @@ def reasoner(query: str, documents: list[str], llm_client: Any):
166
  if not documents or len(documents) == 0:
167
  prompt_template = Template(templates["no_evidence"])
168
  prompt = prompt_template.substitute(claim=query)
 
169
  # prompt = templates["no_evidence"].format(claim=query)
170
  else:
171
  # TODO: fix prompt call to include retrieved documents
172
- prompt_template = Template(templates["no_evidence"])
173
- prompt = prompt_template.substitute(claim=query)
174
- # prompt = templates["no_evidence"].format(claim=query)
175
 
176
  llm_response = llm_client.run_inference(prompt)
177
 
178
- # message = message + '\n' + llm_response
179
-
180
  answer_dict = safe_parse_json(llm_response)
181
  decision = answer_dict.get("decision", "")
182
  reasoning = answer_dict.get("reasoning", "")
183
 
184
- # message = message + '\n' + decision
185
-
186
  for chunk in message.split():
187
  text += chunk + " "
188
  time.sleep(0.05)
@@ -221,7 +243,6 @@ if prompt := st.chat_input("Type here"):
221
  options["model_name"] = "o3-mini-2025-01-31"
222
 
223
  options["API_KEY"] = api_key
224
- print(f'Tester: {options["API_KEY"]}')
225
 
226
  llm_client = LLMReasoner(options)
227
 
 
4
  import hmac
5
  import os
6
  import json
7
+ import requests
8
  from llm_reasoner import LLMReasoner
9
  from prompts import templates
10
  from typing import Any
 
59
  """Returns only when a valid option is selected from both dropdowns."""
60
 
61
  #placeholders
62
+ retriever_options = ["Choose one...", "BM25 Retriever", "Off-the-shelf Retriever", "Finetuned Retriever", "No Retriever"]
63
  reasoner_options = ["Choose one...", "Claude Sonnet", "GPT-4o", "o3-mini"]
64
 
65
  #selectboxes
 
135
  placeholder = st.empty()
136
  text=""
137
 
138
+ if selected_retriever == "BM25 Retriever":
139
+ message = "Using the BM25 retriever to search for documents related to your query..."
140
+ retriever_endpoint = "bm25"
141
+ elif selected_retriever == "Off-the-shelf Retriever":
142
+ message = "Using the off-the-shelf retriever to fetch detailed documents relevant to your query..."
143
+ retriever_endpoint = "ots"
144
+ elif selected_retriever == "Finetuned Retriever":
145
+ message = "Using the finetuned retriever to fetch detailed documents relevant to your query..."
146
+ retriever_endpoint = "ft"
147
  else:
148
  message = "No retriever selected. Skipping document retrieval."
149
+ return ""
150
+
151
+ headers = {
152
+ 'Content-Type': 'application/json',
153
+ }
154
+
155
+ json_data = {
156
+ 'claim': query,
157
+ }
158
+
159
+ url = "http://130.245.163.20"
160
+ port = "80"
161
+ response = requests.post(f'{url}:{port}/{retriever_endpoint}', headers=headers, json=json_data)
162
+ documents = response.json()["Documents"]
163
+
164
+ k = 3
165
+ topk_documents = documents[:k]
166
+
167
+ corpus = '\n\n'.join(topk_documents)
168
 
169
  for chunk in message.split():
170
  text += chunk + " "
 
173
  placeholder.markdown(text + "▌")
174
  placeholder.markdown(text)
175
  # You could return retrieved info here.
176
+ return corpus
177
 
178
  def reasoner(query: str, documents: list[str], llm_client: Any):
179
  """Simulate a 'reasoner' step, thinking about how to answer."""
 
191
  if not documents or len(documents) == 0:
192
  prompt_template = Template(templates["no_evidence"])
193
  prompt = prompt_template.substitute(claim=query)
194
+ print(prompt)
195
  # prompt = templates["no_evidence"].format(claim=query)
196
  else:
197
  # TODO: fix prompt call to include retrieved documents
198
+ prompt_template = Template(templates["with_evidence"])
199
+ prompt = prompt_template.substitute(claim=query, corpus=documents)
200
+ # prompt = templates["no_evidence"].format(claim=query, corpus=documents)
201
 
202
  llm_response = llm_client.run_inference(prompt)
203
 
 
 
204
  answer_dict = safe_parse_json(llm_response)
205
  decision = answer_dict.get("decision", "")
206
  reasoning = answer_dict.get("reasoning", "")
207
 
 
 
208
  for chunk in message.split():
209
  text += chunk + " "
210
  time.sleep(0.05)
 
243
  options["model_name"] = "o3-mini-2025-01-31"
244
 
245
  options["API_KEY"] = api_key
 
246
 
247
  llm_client = LLMReasoner(options)
248
 
prompts.py CHANGED
@@ -13,5 +13,21 @@ templates = {
13
  "Do not add markdown formatting, code fences, or additional text. The output must start with { and end with }." \
14
  'Example Output: {"reasoning": "Your brief explanation here (one or two sentences).", "decision": "SUPPORT or CONTRADICT"}' \
15
  "Now, please evaluate the claim above." \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ""
17
  }
 
13
  "Do not add markdown formatting, code fences, or additional text. The output must start with { and end with }." \
14
  'Example Output: {"reasoning": "Your brief explanation here (one or two sentences).", "decision": "SUPPORT or CONTRADICT"}' \
15
  "Now, please evaluate the claim above." \
16
+ "",
17
+ "with_evidence": "You are an AI model tasked with verifying claims related to medical and health topics using zero-shot learning. Your job is to analyze a given claim and decide whether the available evidence and your general medical knowledge would likely SUPPORT or CONTRADICT the claim." \
18
+ "Claim to Evaluate: <claim> $claim </claim>" \
19
+ "Relevant Documents: <corpus> $corpus </corpus>" \
20
+ "Guidelines:" \
21
+ "Evaluate the claim's plausibility based on general medical knowledge." \
22
+ "Consider the specificity and credibility of any numbers or percentages." \
23
+ "Analyze the context and scope of the claim." \
24
+ "Assess any potential biases or limitations." \
25
+ "Output Format:" \
26
+ "After your analysis, output exactly one JSON object with two keys:" \
27
+ '"reasoning": A brief explanation (one or two sentences).' \
28
+ '"decision": Either "SUPPORT" or "CONTRADICT" (uppercase, no additional text).' \
29
+ "Do not add markdown formatting, code fences, or additional text. The output must start with { and end with }." \
30
+ 'Example Output: {"reasoning": "Your brief explanation here (one or two sentences).", "decision": "SUPPORT or CONTRADICT"}' \
31
+ "Now, please evaluate the claim above." \
32
  ""
33
  }
requirements.txt CHANGED
@@ -1,2 +1,3 @@
1
  anthropic==0.45.2
2
- openai==1.62.0
 
 
1
  anthropic==0.45.2
2
+ openai==1.62.0
3
+ requests