Spaces:
Running
Running
Yu (Hope) Hou
commited on
Commit
·
2d3610f
1
Parent(s):
3759572
update the leaderboard for qanta 2025
Browse files- README.md +1 -1
- app.py +7 -316
- src/about.py +0 -117
- src/display/utils.py +7 -125
- src/envs.py +1 -4
- src/leaderboard/read_evals.py +0 -196
- src/populate.py +26 -57
- src/submission/check_validity.py +0 -99
- src/submission/submit.py +0 -119
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Grounded Qa Leaderboard
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Grounded Qa Leaderboard
|
3 |
+
emoji: 👻
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,46 +1,23 @@
|
|
1 |
-
import subprocess
|
2 |
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
6 |
|
7 |
from src.about import (
|
8 |
-
CITATION_BUTTON_LABEL,
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
15 |
from src.display.css_html_js import custom_css
|
16 |
from src.display.utils import (
|
17 |
-
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
NUMERIC_INTERVALS,
|
22 |
-
TYPES,
|
23 |
-
AutoEvalColumn,
|
24 |
-
ModelType,
|
25 |
fields,
|
26 |
-
WeightType,
|
27 |
-
Precision
|
28 |
)
|
29 |
-
from src.envs import API,
|
30 |
-
from src.populate import
|
31 |
-
from src.submission.submit import add_new_eval
|
32 |
|
33 |
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
37 |
-
try:
|
38 |
-
print(EVAL_REQUESTS_PATH)
|
39 |
-
snapshot_download(
|
40 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
41 |
-
)
|
42 |
-
except Exception:
|
43 |
-
restart_space()
|
44 |
try:
|
45 |
print(EVAL_RESULTS_PATH)
|
46 |
snapshot_download(
|
@@ -49,90 +26,9 @@ try:
|
|
49 |
except Exception:
|
50 |
restart_space()
|
51 |
|
52 |
-
|
53 |
-
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
54 |
leaderboard_df = original_df.copy()
|
55 |
|
56 |
-
(
|
57 |
-
finished_eval_queue_df,
|
58 |
-
running_eval_queue_df,
|
59 |
-
pending_eval_queue_df,
|
60 |
-
failed_eval_queue_df,
|
61 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
62 |
-
|
63 |
-
|
64 |
-
# Searching and filtering
|
65 |
-
def update_table(
|
66 |
-
hidden_df: pd.DataFrame,
|
67 |
-
columns: list,
|
68 |
-
type_query: list,
|
69 |
-
precision_query: str,
|
70 |
-
size_query: list,
|
71 |
-
show_deleted: bool,
|
72 |
-
query: str,
|
73 |
-
):
|
74 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
75 |
-
filtered_df = filter_queries(query, filtered_df)
|
76 |
-
df = select_columns(filtered_df, columns)
|
77 |
-
return df
|
78 |
-
|
79 |
-
|
80 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
81 |
-
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
82 |
-
|
83 |
-
|
84 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
85 |
-
always_here_cols = [
|
86 |
-
AutoEvalColumn.model_type_symbol.name,
|
87 |
-
AutoEvalColumn.model.name,
|
88 |
-
]
|
89 |
-
# We use COLS to maintain sorting
|
90 |
-
filtered_df = df[
|
91 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
92 |
-
]
|
93 |
-
return filtered_df
|
94 |
-
|
95 |
-
|
96 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
97 |
-
final_df = []
|
98 |
-
if query != "":
|
99 |
-
queries = [q.strip() for q in query.split(";")]
|
100 |
-
for _q in queries:
|
101 |
-
_q = _q.strip()
|
102 |
-
if _q != "":
|
103 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
104 |
-
if len(temp_filtered_df) > 0:
|
105 |
-
final_df.append(temp_filtered_df)
|
106 |
-
if len(final_df) > 0:
|
107 |
-
filtered_df = pd.concat(final_df)
|
108 |
-
filtered_df = filtered_df.drop_duplicates(
|
109 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
110 |
-
)
|
111 |
-
|
112 |
-
return filtered_df
|
113 |
-
|
114 |
-
|
115 |
-
def filter_models(
|
116 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
117 |
-
) -> pd.DataFrame:
|
118 |
-
# Show all models
|
119 |
-
if show_deleted:
|
120 |
-
filtered_df = df
|
121 |
-
else: # Show only still on the hub models
|
122 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
123 |
-
|
124 |
-
type_emoji = [t[0] for t in type_query]
|
125 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
126 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
127 |
-
|
128 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
129 |
-
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
130 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
131 |
-
filtered_df = filtered_df.loc[mask]
|
132 |
-
|
133 |
-
return filtered_df
|
134 |
-
|
135 |
-
|
136 |
demo = gr.Blocks(css=custom_css)
|
137 |
with demo:
|
138 |
gr.HTML(TITLE)
|
@@ -140,222 +36,17 @@ with demo:
|
|
140 |
|
141 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
142 |
with gr.TabItem("🏅 System", elem_id="llm-benchmark-tab-table", id=0):
|
143 |
-
with gr.Row():
|
144 |
-
with gr.Column():
|
145 |
-
with gr.Row():
|
146 |
-
search_bar = gr.Textbox(
|
147 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
148 |
-
show_label=False,
|
149 |
-
elem_id="search-bar",
|
150 |
-
)
|
151 |
-
with gr.Row():
|
152 |
-
shown_columns = gr.CheckboxGroup(
|
153 |
-
choices=[
|
154 |
-
c.name
|
155 |
-
for c in fields(AutoEvalColumn)
|
156 |
-
if not c.hidden and not c.never_hidden
|
157 |
-
],
|
158 |
-
value=[
|
159 |
-
c.name
|
160 |
-
for c in fields(AutoEvalColumn)
|
161 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
162 |
-
],
|
163 |
-
label="Select columns to show",
|
164 |
-
elem_id="column-select",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
with gr.Row():
|
168 |
-
deleted_models_visibility = gr.Checkbox(
|
169 |
-
value=False, label="Show gated/private/deleted models", interactive=True
|
170 |
-
)
|
171 |
-
with gr.Column(min_width=320):
|
172 |
-
#with gr.Box(elem_id="box-filter"):
|
173 |
-
filter_columns_type = gr.CheckboxGroup(
|
174 |
-
label="Model types",
|
175 |
-
choices=[t.to_str() for t in ModelType],
|
176 |
-
value=[t.to_str() for t in ModelType],
|
177 |
-
interactive=True,
|
178 |
-
elem_id="filter-columns-type",
|
179 |
-
)
|
180 |
-
filter_columns_precision = gr.CheckboxGroup(
|
181 |
-
label="Precision",
|
182 |
-
choices=[i.value.name for i in Precision],
|
183 |
-
value=[i.value.name for i in Precision],
|
184 |
-
interactive=True,
|
185 |
-
elem_id="filter-columns-precision",
|
186 |
-
)
|
187 |
-
filter_columns_size = gr.CheckboxGroup(
|
188 |
-
label="Model sizes (in billions of parameters)",
|
189 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
190 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
191 |
-
interactive=True,
|
192 |
-
elem_id="filter-columns-size",
|
193 |
-
)
|
194 |
-
|
195 |
leaderboard_table = gr.components.Dataframe(
|
196 |
value=leaderboard_df[
|
197 |
-
[
|
198 |
-
+ shown_columns.value
|
199 |
],
|
200 |
-
headers=[c.name for c in fields(
|
201 |
-
datatype=
|
202 |
elem_id="leaderboard-table",
|
203 |
interactive=False,
|
204 |
visible=True,
|
205 |
)
|
206 |
|
207 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
208 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
209 |
-
value=original_df[COLS],
|
210 |
-
headers=COLS,
|
211 |
-
datatype=TYPES,
|
212 |
-
visible=False,
|
213 |
-
)
|
214 |
-
search_bar.submit(
|
215 |
-
update_table,
|
216 |
-
[
|
217 |
-
hidden_leaderboard_table_for_search,
|
218 |
-
shown_columns,
|
219 |
-
filter_columns_type,
|
220 |
-
filter_columns_precision,
|
221 |
-
filter_columns_size,
|
222 |
-
deleted_models_visibility,
|
223 |
-
search_bar,
|
224 |
-
],
|
225 |
-
leaderboard_table,
|
226 |
-
)
|
227 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
228 |
-
selector.change(
|
229 |
-
update_table,
|
230 |
-
[
|
231 |
-
hidden_leaderboard_table_for_search,
|
232 |
-
shown_columns,
|
233 |
-
filter_columns_type,
|
234 |
-
filter_columns_precision,
|
235 |
-
filter_columns_size,
|
236 |
-
deleted_models_visibility,
|
237 |
-
search_bar,
|
238 |
-
],
|
239 |
-
leaderboard_table,
|
240 |
-
queue=True,
|
241 |
-
)
|
242 |
-
|
243 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
244 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
245 |
-
|
246 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
247 |
-
with gr.Column():
|
248 |
-
with gr.Row():
|
249 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
250 |
-
|
251 |
-
with gr.Column():
|
252 |
-
with gr.Accordion(
|
253 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
254 |
-
open=False,
|
255 |
-
):
|
256 |
-
with gr.Row():
|
257 |
-
finished_eval_table = gr.components.Dataframe(
|
258 |
-
value=finished_eval_queue_df,
|
259 |
-
headers=EVAL_COLS,
|
260 |
-
datatype=EVAL_TYPES,
|
261 |
-
row_count=5,
|
262 |
-
)
|
263 |
-
|
264 |
-
with gr.Accordion(
|
265 |
-
f"❌ Failed Evaluations ({len(failed_eval_queue_df)})",
|
266 |
-
open=False,
|
267 |
-
):
|
268 |
-
with gr.Row():
|
269 |
-
finished_eval_table = gr.components.Dataframe(
|
270 |
-
value=failed_eval_queue_df,
|
271 |
-
headers=EVAL_COLS,
|
272 |
-
datatype=EVAL_TYPES,
|
273 |
-
row_count=5,
|
274 |
-
)
|
275 |
-
|
276 |
-
with gr.Accordion(
|
277 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
278 |
-
open=False,
|
279 |
-
):
|
280 |
-
with gr.Row():
|
281 |
-
running_eval_table = gr.components.Dataframe(
|
282 |
-
value=running_eval_queue_df,
|
283 |
-
headers=EVAL_COLS,
|
284 |
-
datatype=EVAL_TYPES,
|
285 |
-
row_count=5,
|
286 |
-
)
|
287 |
-
|
288 |
-
with gr.Accordion(
|
289 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
290 |
-
open=False,
|
291 |
-
):
|
292 |
-
with gr.Row():
|
293 |
-
pending_eval_table = gr.components.Dataframe(
|
294 |
-
value=pending_eval_queue_df,
|
295 |
-
headers=EVAL_COLS,
|
296 |
-
datatype=EVAL_TYPES,
|
297 |
-
row_count=5,
|
298 |
-
)
|
299 |
-
with gr.Row():
|
300 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
301 |
-
|
302 |
-
with gr.Row():
|
303 |
-
with gr.Column():
|
304 |
-
model_name_textbox = gr.Textbox(label="QA model name")
|
305 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
306 |
-
model_type = gr.Dropdown(
|
307 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
308 |
-
label="Model type",
|
309 |
-
multiselect=False,
|
310 |
-
value=None,
|
311 |
-
interactive=True,
|
312 |
-
)
|
313 |
-
|
314 |
-
with gr.Column():
|
315 |
-
precision = gr.Dropdown(
|
316 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
317 |
-
label="Precision",
|
318 |
-
multiselect=False,
|
319 |
-
value="float16",
|
320 |
-
interactive=True,
|
321 |
-
)
|
322 |
-
# weight_type = gr.Dropdown(
|
323 |
-
# choices=[i.value.name for i in WeightType],
|
324 |
-
# label="Weights type",
|
325 |
-
# multiselect=False,
|
326 |
-
# value="Original",
|
327 |
-
# interactive=True,
|
328 |
-
# )
|
329 |
-
weight_type = gr.Textbox(label="Retrieved dataset name")
|
330 |
-
# TODO: default fake weight_type for now
|
331 |
-
# weight_type = "none"
|
332 |
-
base_model_name_textbox = gr.Textbox(label="Retriever model name")
|
333 |
-
|
334 |
-
submit_button = gr.Button("Submit Eval")
|
335 |
-
submission_result = gr.Markdown()
|
336 |
-
submit_button.click(
|
337 |
-
add_new_eval,
|
338 |
-
[
|
339 |
-
model_name_textbox,
|
340 |
-
base_model_name_textbox,
|
341 |
-
revision_name_textbox,
|
342 |
-
precision,
|
343 |
-
weight_type,
|
344 |
-
model_type,
|
345 |
-
],
|
346 |
-
submission_result,
|
347 |
-
)
|
348 |
-
|
349 |
-
# with gr.Row():
|
350 |
-
# with gr.Accordion("📙 More about the task", open=False):
|
351 |
-
# citation_button = gr.Textbox(
|
352 |
-
# value=CITATION_BUTTON_TEXT,
|
353 |
-
# label=CITATION_BUTTON_LABEL,
|
354 |
-
# lines=20,
|
355 |
-
# elem_id="citation-button",
|
356 |
-
# show_copy_button=True,
|
357 |
-
# )
|
358 |
-
|
359 |
scheduler = BackgroundScheduler()
|
360 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
361 |
scheduler.start()
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from apscheduler.schedulers.background import BackgroundScheduler
|
3 |
from huggingface_hub import snapshot_download
|
4 |
|
5 |
from src.about import (
|
|
|
|
|
|
|
6 |
INTRODUCTION_TEXT,
|
|
|
7 |
TITLE,
|
8 |
)
|
9 |
from src.display.css_html_js import custom_css
|
10 |
from src.display.utils import (
|
11 |
+
NewAutoEvalColumn,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
fields,
|
|
|
|
|
13 |
)
|
14 |
+
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
15 |
+
from src.populate import get_new_leaderboard_df
|
|
|
16 |
|
17 |
|
18 |
def restart_space():
|
19 |
API.restart_space(repo_id=REPO_ID)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
print(EVAL_RESULTS_PATH)
|
23 |
snapshot_download(
|
|
|
26 |
except Exception:
|
27 |
restart_space()
|
28 |
|
29 |
+
original_df = get_new_leaderboard_df(EVAL_RESULTS_PATH)
|
|
|
30 |
leaderboard_df = original_df.copy()
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
demo = gr.Blocks(css=custom_css)
|
33 |
with demo:
|
34 |
gr.HTML(TITLE)
|
|
|
36 |
|
37 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
38 |
with gr.TabItem("🏅 System", elem_id="llm-benchmark-tab-table", id=0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
leaderboard_table = gr.components.Dataframe(
|
40 |
value=leaderboard_df[
|
41 |
+
["model", "buzz_accuracy", "win_rate_human", "win_rate_model"]
|
|
|
42 |
],
|
43 |
+
headers=[c.name for c in fields(NewAutoEvalColumn)],
|
44 |
+
datatype=[c.type for c in fields(NewAutoEvalColumn)],
|
45 |
elem_id="leaderboard-table",
|
46 |
interactive=False,
|
47 |
visible=True,
|
48 |
)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
scheduler = BackgroundScheduler()
|
51 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
52 |
scheduler.start()
|
src/about.py
CHANGED
@@ -1,25 +1,3 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
@dataclass
|
5 |
-
class Task:
|
6 |
-
benchmark: str
|
7 |
-
metric: str
|
8 |
-
col_name: str
|
9 |
-
|
10 |
-
|
11 |
-
# Select your tasks here
|
12 |
-
# ---------------------------------------------------
|
13 |
-
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
-
# task0 = Task("trickme", "acc", "Accuracy")
|
16 |
-
task1 = Task("trickme", "avg_confidence", "Buzz Confidence")
|
17 |
-
|
18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
-
# ---------------------------------------------------
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
# Your leaderboard name
|
24 |
TITLE = """<h1 align="center" id="space-title">Adversarial Calibration QA Leaderboard</h1>"""
|
25 |
|
@@ -27,98 +5,3 @@ TITLE = """<h1 align="center" id="space-title">Adversarial Calibration QA Leader
|
|
27 |
INTRODUCTION_TEXT = """
|
28 |
Build an open-domain QA system that can answer any question posed by humans! For more: https://sites.google.com/view/qanta/home
|
29 |
"""
|
30 |
-
|
31 |
-
# Which evaluations are you running? how can people reproduce what you have?
|
32 |
-
LLM_BENCHMARKS_TEXT = """
|
33 |
-
## QA variants
|
34 |
-
|
35 |
-
### Generative QA
|
36 |
-
This type of QA system aims to generate an answer to a given question directly.
|
37 |
-
|
38 |
-
#### Input
|
39 |
-
(1) `question` string
|
40 |
-
|
41 |
-
```
|
42 |
-
E.g. qa_pipe(question)
|
43 |
-
```
|
44 |
-
|
45 |
-
#### Output
|
46 |
-
Return in a JSON format: (1) `guess` string, (2) `confidence` score which should be a float number representing the probability (0-1) of your guess.
|
47 |
-
|
48 |
-
```
|
49 |
-
E.g. {'guess': 'Apple', 'confidence': 0.02}
|
50 |
-
```
|
51 |
-
|
52 |
-
Reminder: Feel free to check the tutorial provided to see how you could calculate the probability of the generated tokens!
|
53 |
-
|
54 |
-
### Extractive QA
|
55 |
-
This type of QA system aims to extract an answer span from a context passage for a given question.
|
56 |
-
|
57 |
-
#### Input
|
58 |
-
(1) `question` string, and (2) `context` string
|
59 |
-
|
60 |
-
```
|
61 |
-
E.g. qa_pipe(question=question, context=context)
|
62 |
-
```
|
63 |
-
|
64 |
-
#### Output
|
65 |
-
Return in a JSON format: (1) `guess` string, (2) `confidence` score which should be a float number representing the probability (0-1) of your guess.
|
66 |
-
|
67 |
-
```
|
68 |
-
E.g. {'guess': 'Apple', 'confidence': 0.02}
|
69 |
-
```
|
70 |
-
|
71 |
-
Reminder: If you are playing around with an extractive QA model already, HF QA models output the `score` already, so you only need to wrap the `score` to `confidence`.
|
72 |
-
|
73 |
-
## Evaluation Metric
|
74 |
-
In our Adversarial Calibration QA task, we evaluate the QA model's reliability of their performance by measuring their calibration estimates where we consider the confidence of guess confidence values. To understand this concept better, we adopt the concept of "buzz" in Trivia Quiz, where buzz happens whenever the player is confident enough to predict the correct guess in the middle of a question. This also applies to our measurement of model calibration as we focus whether the model prediction probability matches its prediction accuracy. Our evaluation metric, `Average Expected Buzz`, quantifies the expected buzz confidence estimation.
|
75 |
-
|
76 |
-
## FAQ
|
77 |
-
What if my system type is not specified here or not supported yet?
|
78 |
-
- Please send us an email so we could check how we adapt the leaderboard for your purpose. Thanks!
|
79 |
-
|
80 |
-
I don't understand where I could start to build a QA system for submission.
|
81 |
-
- Please check our submission tutorials. From there, you could fine-tune or do anything above the base models.
|
82 |
-
|
83 |
-
I want to use API-based QA systems for submission, like GPT4. What should I do?
|
84 |
-
- We don't support API-based models now but you could train your model with the GPT cache we provided: https://github.com/Pinafore/nlp-hw/tree/master/models.
|
85 |
-
|
86 |
-
I have no ideas why my model is not working. Could you help me?
|
87 |
-
- Yes! After you model submission is evaluated, you could check the first few example details with how scores are calculated [here](https://huggingface.co/datasets/umdclip/qanta_leaderboard_logs)!
|
88 |
-
"""
|
89 |
-
|
90 |
-
EVALUATION_QUEUE_TEXT = """
|
91 |
-
**Step 1: Make sure it could work locally**
|
92 |
-
|
93 |
-
After you have a QA system uploaded to HuggingFace (with license specified), please check with the following example code to see if your pipe could return the guess and confidence score in a **JSON** format.
|
94 |
-
|
95 |
-
```
|
96 |
-
from transformers import pipeline
|
97 |
-
qa_pipe = pipeline(model="...", trust_remote_code=True)
|
98 |
-
|
99 |
-
# If it is a Generative QA pipeline
|
100 |
-
qa_pipe(“Where is UMD?”)
|
101 |
-
|
102 |
-
# If it is a Extractive QA pipeline
|
103 |
-
qa_pipe(question=“Where is UMD?”, context=”UMD is in Maryland.”)
|
104 |
-
```
|
105 |
-
|
106 |
-
**Step 2: Fill in the submission form**
|
107 |
-
|
108 |
-
(1) Fill in the `QA model name`
|
109 |
-
|
110 |
-
(2) Fill in the `Revision commit`: if you leave it empty, by default it will be `main`.
|
111 |
-
|
112 |
-
(3) Fill in the `Model type`
|
113 |
-
|
114 |
-
(4) `Precision` by default is `float16`. You could update it as needed.
|
115 |
-
|
116 |
-
(5) You could leave the `Retrieved dataset name` and `Retriever model` fields empty as we provide context for your extractive QA model. Let us know if you want to use your own context or retriver via an email!
|
117 |
-
|
118 |
-
Here is a tutorial on how you could make pipe wrappers for submissions: [Colab](https://colab.research.google.com/drive/1bCt2870SdY6tI4uE3JPG8_3nLmNJXX6_?usp=sharing)
|
119 |
-
"""
|
120 |
-
|
121 |
-
CITATION_BUTTON_LABEL = "Copy the following link to check more details"
|
122 |
-
CITATION_BUTTON_TEXT = r"""
|
123 |
-
https://sites.google.com/view/qanta/home
|
124 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Your leaderboard name
|
2 |
TITLE = """<h1 align="center" id="space-title">Adversarial Calibration QA Leaderboard</h1>"""
|
3 |
|
|
|
5 |
INTRODUCTION_TEXT = """
|
6 |
Build an open-domain QA system that can answer any question posed by humans! For more: https://sites.google.com/view/qanta/home
|
7 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils.py
CHANGED
@@ -1,135 +1,17 @@
|
|
1 |
from dataclasses import dataclass, make_dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.about import Tasks
|
7 |
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
11 |
-
|
12 |
-
# These classes are for user facing column names,
|
13 |
-
# to avoid having to change them all around the code
|
14 |
-
# when a modif is needed
|
15 |
@dataclass
|
16 |
-
class
|
17 |
name: str
|
18 |
type: str
|
19 |
-
displayed_by_default: bool
|
20 |
-
hidden: bool = False
|
21 |
-
never_hidden: bool = False
|
22 |
-
|
23 |
-
## Leaderboard columns
|
24 |
-
auto_eval_column_dict = []
|
25 |
-
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
-
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
-
for task in Tasks:
|
31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
-
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
-
|
43 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
-
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
-
|
46 |
-
## For the queue columns in the submission tab
|
47 |
-
@dataclass(frozen=True)
|
48 |
-
class EvalQueueColumn: # Queue column
|
49 |
-
model = ColumnContent("model", "markdown", True)
|
50 |
-
revision = ColumnContent("revision", "str", True)
|
51 |
-
private = ColumnContent("private", "bool", True)
|
52 |
-
precision = ColumnContent("precision", "str", True)
|
53 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
-
status = ColumnContent("status", "str", True)
|
55 |
-
|
56 |
-
## All the model information that we might need
|
57 |
-
@dataclass
|
58 |
-
class ModelDetails:
|
59 |
-
name: str
|
60 |
-
display_name: str = ""
|
61 |
-
symbol: str = "" # emoji
|
62 |
-
|
63 |
-
|
64 |
-
class ModelType(Enum):
|
65 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
66 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
67 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
68 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
69 |
-
Unknown = ModelDetails(name="", symbol="?")
|
70 |
-
|
71 |
-
def to_str(self, separator=" "):
|
72 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
73 |
-
|
74 |
-
@staticmethod
|
75 |
-
def from_str(type):
|
76 |
-
if "fine-tuned" in type or "🔶" in type:
|
77 |
-
return ModelType.FT
|
78 |
-
if "pretrained" in type or "🟢" in type:
|
79 |
-
return ModelType.PT
|
80 |
-
if "RL-tuned" in type or "🟦" in type:
|
81 |
-
return ModelType.RL
|
82 |
-
if "instruction-tuned" in type or "⭕" in type:
|
83 |
-
return ModelType.IFT
|
84 |
-
return ModelType.Unknown
|
85 |
-
|
86 |
-
class WeightType(Enum):
|
87 |
-
Adapter = ModelDetails("Adapter")
|
88 |
-
Original = ModelDetails("Original")
|
89 |
-
Delta = ModelDetails("Delta")
|
90 |
-
|
91 |
-
class Precision(Enum):
|
92 |
-
float16 = ModelDetails("float16")
|
93 |
-
bfloat16 = ModelDetails("bfloat16")
|
94 |
-
float32 = ModelDetails("float32")
|
95 |
-
#qt_8bit = ModelDetails("8bit")
|
96 |
-
#qt_4bit = ModelDetails("4bit")
|
97 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
98 |
-
Unknown = ModelDetails("?")
|
99 |
-
|
100 |
-
def from_str(precision):
|
101 |
-
if precision in ["torch.float16", "float16"]:
|
102 |
-
return Precision.float16
|
103 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
104 |
-
return Precision.bfloat16
|
105 |
-
if precision in ["float32"]:
|
106 |
-
return Precision.float32
|
107 |
-
#if precision in ["8bit"]:
|
108 |
-
# return Precision.qt_8bit
|
109 |
-
#if precision in ["4bit"]:
|
110 |
-
# return Precision.qt_4bit
|
111 |
-
#if precision in ["GPTQ", "None"]:
|
112 |
-
# return Precision.qt_GPTQ
|
113 |
-
return Precision.Unknown
|
114 |
-
|
115 |
-
# Column selection
|
116 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
117 |
-
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
118 |
-
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
119 |
-
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
120 |
-
|
121 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
122 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
"?": pd.Interval(-1, 0, closed="right"),
|
128 |
-
"~1.5": pd.Interval(0, 2, closed="right"),
|
129 |
-
"~3": pd.Interval(2, 4, closed="right"),
|
130 |
-
"~7": pd.Interval(4, 9, closed="right"),
|
131 |
-
"~13": pd.Interval(9, 20, closed="right"),
|
132 |
-
"~35": pd.Interval(20, 45, closed="right"),
|
133 |
-
"~60": pd.Interval(45, 70, closed="right"),
|
134 |
-
"70+": pd.Interval(70, 10000, closed="right"),
|
135 |
-
}
|
|
|
1 |
from dataclasses import dataclass, make_dataclass
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def fields(raw_class):
|
4 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
5 |
|
|
|
|
|
|
|
|
|
6 |
@dataclass
|
7 |
+
class NewColumnContent:
|
8 |
name: str
|
9 |
type: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
new_auto_eval_column_dict = []
|
12 |
+
new_auto_eval_column_dict.append(["model", NewColumnContent, NewColumnContent("Model", "markdown")])
|
13 |
+
new_auto_eval_column_dict.append(["buzz_accuracy", NewColumnContent, NewColumnContent("Buzz Accuracy ⬆️", "number")])
|
14 |
+
new_auto_eval_column_dict.append(["win_rate_human", NewColumnContent, NewColumnContent("Win Rate (Human Teams)", "number")])
|
15 |
+
new_auto_eval_column_dict.append(["win_rate_model", NewColumnContent, NewColumnContent("Win Rate (Model Teams)", "number")])
|
16 |
|
17 |
+
NewAutoEvalColumn = make_dataclass("NewAutoEvalColumn", new_auto_eval_column_dict, frozen=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
CHANGED
@@ -10,16 +10,13 @@ OWNER = "umdclip" # Change to your org - don't forget to create a results and re
|
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/grounded_qa_leaderboard"
|
13 |
-
|
14 |
-
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
|
25 |
API = HfApi(token=TOKEN)
|
|
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/grounded_qa_leaderboard"
|
13 |
+
RESULTS_REPO = f"{OWNER}/model-results"
|
|
|
14 |
|
15 |
# If you setup a cache later, just change HF_HOME
|
16 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
17 |
|
18 |
# Local caches
|
|
|
19 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
|
|
20 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
21 |
|
22 |
API = HfApi(token=TOKEN)
|
src/leaderboard/read_evals.py
DELETED
@@ -1,196 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import math
|
4 |
-
import os
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import dateutil
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
12 |
-
from src.submission.check_validity import is_model_on_hub
|
13 |
-
|
14 |
-
|
15 |
-
@dataclass
|
16 |
-
class EvalResult:
|
17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
-
"""
|
19 |
-
eval_name: str # org_model_precision (uid)
|
20 |
-
full_model: str # org/model (path on hub)
|
21 |
-
org: str
|
22 |
-
model: str
|
23 |
-
revision: str # commit hash, "" if main
|
24 |
-
results: dict
|
25 |
-
precision: Precision = Precision.Unknown
|
26 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
-
architecture: str = "Unknown"
|
29 |
-
license: str = "?"
|
30 |
-
likes: int = 0
|
31 |
-
num_params: int = 0
|
32 |
-
date: str = "" # submission date of request file
|
33 |
-
still_on_hub: bool = False
|
34 |
-
|
35 |
-
@classmethod
|
36 |
-
def init_from_json_file(self, json_filepath):
|
37 |
-
"""Inits the result from the specific model result file"""
|
38 |
-
with open(json_filepath) as fp:
|
39 |
-
data = json.load(fp)
|
40 |
-
|
41 |
-
config = data.get("config")
|
42 |
-
|
43 |
-
# Precision
|
44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
-
|
46 |
-
# Get model and org
|
47 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
48 |
-
org_and_model = org_and_model.split("/", 1)
|
49 |
-
|
50 |
-
if len(org_and_model) == 1:
|
51 |
-
org = None
|
52 |
-
model = org_and_model[0]
|
53 |
-
result_key = f"{model}_{precision.value.name}"
|
54 |
-
else:
|
55 |
-
org = org_and_model[0]
|
56 |
-
model = org_and_model[1]
|
57 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
58 |
-
full_model = "/".join(org_and_model)
|
59 |
-
|
60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
-
)
|
63 |
-
architecture = "?"
|
64 |
-
if model_config is not None:
|
65 |
-
architectures = getattr(model_config, "architectures", None)
|
66 |
-
if architectures:
|
67 |
-
architecture = ";".join(architectures)
|
68 |
-
|
69 |
-
# Extract results available in this file (some results are split in several files)
|
70 |
-
results = {}
|
71 |
-
for task in Tasks:
|
72 |
-
task = task.value
|
73 |
-
|
74 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
-
continue
|
78 |
-
|
79 |
-
mean_acc = np.mean(accs) * 100.0
|
80 |
-
results[task.benchmark] = mean_acc
|
81 |
-
|
82 |
-
return self(
|
83 |
-
eval_name=result_key,
|
84 |
-
full_model=full_model,
|
85 |
-
org=org,
|
86 |
-
model=model,
|
87 |
-
results=results,
|
88 |
-
precision=precision,
|
89 |
-
revision= config.get("model_sha", ""),
|
90 |
-
still_on_hub=still_on_hub,
|
91 |
-
architecture=architecture
|
92 |
-
)
|
93 |
-
|
94 |
-
def update_with_request_file(self, requests_path):
|
95 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
96 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
97 |
-
|
98 |
-
try:
|
99 |
-
with open(request_file, "r") as f:
|
100 |
-
request = json.load(f)
|
101 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
-
self.license = request.get("license", "?")
|
104 |
-
self.likes = request.get("likes", 0)
|
105 |
-
self.num_params = request.get("params", 0)
|
106 |
-
self.date = request.get("submitted_time", "")
|
107 |
-
except Exception:
|
108 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
109 |
-
|
110 |
-
def to_dict(self):
|
111 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
112 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
-
data_dict = {
|
114 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
116 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
117 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
118 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
119 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
-
AutoEvalColumn.revision.name: self.revision,
|
122 |
-
# AutoEvalColumn.average.name: average,
|
123 |
-
AutoEvalColumn.license.name: self.license,
|
124 |
-
AutoEvalColumn.likes.name: self.likes,
|
125 |
-
AutoEvalColumn.params.name: self.num_params,
|
126 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
127 |
-
}
|
128 |
-
|
129 |
-
for task in Tasks:
|
130 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
131 |
-
|
132 |
-
return data_dict
|
133 |
-
|
134 |
-
|
135 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
136 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
137 |
-
request_files = os.path.join(
|
138 |
-
requests_path,
|
139 |
-
f"{model_name}_eval_request_*.json",
|
140 |
-
)
|
141 |
-
request_files = glob.glob(request_files)
|
142 |
-
|
143 |
-
# Select correct request file (precision)
|
144 |
-
request_file = ""
|
145 |
-
request_files = sorted(request_files, reverse=True)
|
146 |
-
for tmp_request_file in request_files:
|
147 |
-
with open(tmp_request_file, "r") as f:
|
148 |
-
req_content = json.load(f)
|
149 |
-
if (
|
150 |
-
req_content["status"] in ["FINISHED"]
|
151 |
-
and req_content["precision"] == precision.split(".")[-1]
|
152 |
-
):
|
153 |
-
request_file = tmp_request_file
|
154 |
-
return request_file
|
155 |
-
|
156 |
-
|
157 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
158 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
159 |
-
model_result_filepaths = []
|
160 |
-
|
161 |
-
for root, _, files in os.walk(results_path):
|
162 |
-
# We should only have json files in model results
|
163 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
164 |
-
continue
|
165 |
-
|
166 |
-
# Sort the files by date
|
167 |
-
try:
|
168 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
169 |
-
except dateutil.parser._parser.ParserError:
|
170 |
-
files = [files[-1]]
|
171 |
-
|
172 |
-
for file in files:
|
173 |
-
model_result_filepaths.append(os.path.join(root, file))
|
174 |
-
|
175 |
-
eval_results = {}
|
176 |
-
for model_result_filepath in model_result_filepaths:
|
177 |
-
# Creation of result
|
178 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
-
eval_result.update_with_request_file(requests_path)
|
180 |
-
|
181 |
-
# Store results of same eval together
|
182 |
-
eval_name = eval_result.eval_name
|
183 |
-
if eval_name in eval_results.keys():
|
184 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
185 |
-
else:
|
186 |
-
eval_results[eval_name] = eval_result
|
187 |
-
|
188 |
-
results = []
|
189 |
-
for v in eval_results.values():
|
190 |
-
try:
|
191 |
-
v.to_dict() # we test if the dict version is complete
|
192 |
-
results.append(v)
|
193 |
-
except KeyError: # not all eval values present
|
194 |
-
continue
|
195 |
-
|
196 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
CHANGED
@@ -3,60 +3,29 @@ import os
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
for entry in entries:
|
33 |
-
if ".json" in entry:
|
34 |
-
file_path = os.path.join(save_path, entry)
|
35 |
-
with open(file_path) as fp:
|
36 |
-
data = json.load(fp)
|
37 |
-
|
38 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
39 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
40 |
-
|
41 |
-
all_evals.append(data)
|
42 |
-
elif ".md" not in entry:
|
43 |
-
# this is a folder
|
44 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
45 |
-
for sub_entry in sub_entries:
|
46 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
47 |
-
with open(file_path) as fp:
|
48 |
-
data = json.load(fp)
|
49 |
-
|
50 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
51 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
52 |
-
all_evals.append(data)
|
53 |
-
|
54 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
55 |
-
failed_list = [e for e in all_evals if e["status"] == "FAILED"]
|
56 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
57 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
58 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
59 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
60 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
61 |
-
df_failed = pd.DataFrame.from_records(failed_list, columns=cols)
|
62 |
-
return df_finished[cols], df_running[cols], df_pending[cols], df_failed[cols]
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
+
def get_new_leaderboard_df(results_path: str) -> pd.DataFrame:
|
7 |
+
model_result_filepaths = []
|
8 |
+
for root, _, files in os.walk(results_path):
|
9 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
10 |
+
continue
|
11 |
+
for file in files:
|
12 |
+
model_result_filepaths.append(os.path.join(root, file))
|
13 |
+
|
14 |
+
eval_results = {
|
15 |
+
'model': [],
|
16 |
+
'buzz_accuracy': [],
|
17 |
+
'win_rate_human': [],
|
18 |
+
'win_rate_model': []
|
19 |
+
}
|
20 |
+
for model_result_filepath in model_result_filepaths:
|
21 |
+
with open(model_result_filepath, "r") as fin:
|
22 |
+
model_result = json.load(fin)
|
23 |
+
model_id = model_result["model_id"]
|
24 |
+
buzz_accuracy = model_result["buzz_accuracy"]
|
25 |
+
win_rate_human = model_result["win_rate_human"]
|
26 |
+
win_rate_model = model_result["win_rate_model"]
|
27 |
+
eval_results['model'].append(model_id)
|
28 |
+
eval_results['buzz_accuracy'].append(buzz_accuracy)
|
29 |
+
eval_results['win_rate_human'].append(win_rate_human)
|
30 |
+
eval_results['win_rate_model'].append(win_rate_model)
|
31 |
+
return pd.DataFrame(eval_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from collections import defaultdict
|
5 |
-
from datetime import datetime, timedelta, timezone
|
6 |
-
|
7 |
-
import huggingface_hub
|
8 |
-
from huggingface_hub import ModelCard
|
9 |
-
from huggingface_hub.hf_api import ModelInfo
|
10 |
-
from transformers import AutoConfig
|
11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
-
|
13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
-
"""Checks if the model card and license exist and have been filled"""
|
15 |
-
try:
|
16 |
-
card = ModelCard.load(repo_id)
|
17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
-
|
20 |
-
# Enforce license metadata
|
21 |
-
if card.data.license is None:
|
22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
-
return False, (
|
24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
-
" `license_name`/`license_link` pair."
|
26 |
-
)
|
27 |
-
|
28 |
-
# Enforce card content
|
29 |
-
if len(card.text) < 200:
|
30 |
-
return False, "Please add a description to your model card, it is too short."
|
31 |
-
|
32 |
-
return True, ""
|
33 |
-
|
34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=True, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
-
try:
|
37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
-
if test_tokenizer:
|
39 |
-
try:
|
40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
-
except ValueError as e:
|
42 |
-
return (
|
43 |
-
False,
|
44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
-
None
|
46 |
-
)
|
47 |
-
except Exception as e:
|
48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
-
return True, None, config
|
50 |
-
|
51 |
-
except ValueError:
|
52 |
-
return (
|
53 |
-
False,
|
54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
-
None
|
56 |
-
)
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return False, "was not found on hub!", None
|
60 |
-
|
61 |
-
|
62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
-
try:
|
65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
-
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
-
model_size = size_factor * model_size
|
71 |
-
return model_size
|
72 |
-
|
73 |
-
def get_model_arch(model_info: ModelInfo):
|
74 |
-
"""Gets the model architecture from the configuration"""
|
75 |
-
return model_info.config.get("architectures", "Unknown")
|
76 |
-
|
77 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
-
depth = 1
|
80 |
-
file_names = []
|
81 |
-
users_to_submission_dates = defaultdict(list)
|
82 |
-
|
83 |
-
for root, _, files in os.walk(requested_models_dir):
|
84 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
85 |
-
if current_depth == depth:
|
86 |
-
for file in files:
|
87 |
-
if not file.endswith(".json"):
|
88 |
-
continue
|
89 |
-
with open(os.path.join(root, file), "r") as f:
|
90 |
-
info = json.load(f)
|
91 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
92 |
-
|
93 |
-
# Select organisation
|
94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
-
continue
|
96 |
-
organisation, _ = info["model"].split("/")
|
97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
-
|
99 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from datetime import datetime, timezone
|
4 |
-
|
5 |
-
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
from src.submission.check_validity import (
|
8 |
-
already_submitted_models,
|
9 |
-
check_model_card,
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
-
)
|
13 |
-
|
14 |
-
REQUESTED_MODELS = None
|
15 |
-
USERS_TO_SUBMISSION_DATES = None
|
16 |
-
|
17 |
-
def add_new_eval(
|
18 |
-
model: str,
|
19 |
-
base_model: str,
|
20 |
-
revision: str,
|
21 |
-
precision: str,
|
22 |
-
weight_type: str,
|
23 |
-
model_type: str,
|
24 |
-
):
|
25 |
-
global REQUESTED_MODELS
|
26 |
-
global USERS_TO_SUBMISSION_DATES
|
27 |
-
if not REQUESTED_MODELS:
|
28 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
-
|
30 |
-
user_name = ""
|
31 |
-
model_path = model
|
32 |
-
if "/" in model:
|
33 |
-
user_name = model.split("/")[0]
|
34 |
-
model_path = model.split("/")[1]
|
35 |
-
|
36 |
-
precision = precision.split(" ")[0]
|
37 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
-
|
39 |
-
if model_type is None or model_type == "":
|
40 |
-
return styled_error("Please select a model type.")
|
41 |
-
|
42 |
-
# Does the model actually exist?
|
43 |
-
if revision == "":
|
44 |
-
revision = "main"
|
45 |
-
|
46 |
-
# Is the model on the hub?
|
47 |
-
# if weight_type in ["Delta", "Adapter"]:
|
48 |
-
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
-
# if not base_model_on_hub:
|
50 |
-
# return styled_error(f'Base model "{base_model}" {error}')
|
51 |
-
|
52 |
-
# if not weight_type == "Adapter":
|
53 |
-
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
-
# if not model_on_hub:
|
55 |
-
# return styled_error(f'Model "{model}" {error}')
|
56 |
-
|
57 |
-
# Is the model info correctly filled?
|
58 |
-
try:
|
59 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
-
except Exception:
|
61 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
-
|
63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
-
|
65 |
-
# Were the model card and license filled?
|
66 |
-
try:
|
67 |
-
license = model_info.cardData["license"]
|
68 |
-
except Exception:
|
69 |
-
return styled_error("Please select a license for your model")
|
70 |
-
|
71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
if not modelcard_OK:
|
73 |
-
return styled_error(error_msg)
|
74 |
-
|
75 |
-
# Seems good, creating the eval
|
76 |
-
print("Adding new eval")
|
77 |
-
|
78 |
-
eval_entry = {
|
79 |
-
"model": model,
|
80 |
-
"base_model": base_model,
|
81 |
-
"revision": revision,
|
82 |
-
"precision": precision,
|
83 |
-
"weight_type": weight_type,
|
84 |
-
"status": "PENDING",
|
85 |
-
"submitted_time": current_time,
|
86 |
-
"model_type": model_type,
|
87 |
-
"likes": model_info.likes,
|
88 |
-
"params": model_size,
|
89 |
-
"license": license,
|
90 |
-
"private": False,
|
91 |
-
}
|
92 |
-
|
93 |
-
# Check for duplicate submission
|
94 |
-
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
95 |
-
return styled_warning("This model has been already submitted.")
|
96 |
-
|
97 |
-
print("Creating eval file")
|
98 |
-
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
-
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
101 |
-
|
102 |
-
with open(out_path, "w") as f:
|
103 |
-
f.write(json.dumps(eval_entry))
|
104 |
-
|
105 |
-
print("Uploading eval file")
|
106 |
-
API.upload_file(
|
107 |
-
path_or_fileobj=out_path,
|
108 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
109 |
-
repo_id=QUEUE_REPO,
|
110 |
-
repo_type="dataset",
|
111 |
-
commit_message=f"Add {model} to eval queue",
|
112 |
-
)
|
113 |
-
|
114 |
-
# Remove the local file
|
115 |
-
os.remove(out_path)
|
116 |
-
|
117 |
-
return styled_message(
|
118 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
119 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|