import gradio as gr from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( INTRODUCTION_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( AutoEvalColumn, fields, ) from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_new_leaderboard_df def restart_space(): API.restart_space(repo_id=REPO_ID) try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() original_df = get_new_leaderboard_df(EVAL_RESULTS_PATH) leaderboard_df = original_df.copy() demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 System", elem_id="llm-benchmark-tab-table", id=0): leaderboard_table = gr.components.Dataframe( value=[leaderboard_df.iloc[idx] for idx in range(len(leaderboard_df))], headers=[c.name for c in fields(AutoEvalColumn)], datatype=[c.type for c in fields(AutoEvalColumn)], elem_id="leaderboard-table", interactive=False, visible=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()