Spaces:
Sleeping
Sleeping
File size: 7,039 Bytes
123a5ad 3368fe8 123a5ad 3368fe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
from gradio_client import Client
import numpy as np
#import torch
import requests
from PIL import Image
#from torchvision import transforms
from predict_unet import predict_model
title = "<center><strong><font size='8'> Medical Image Segmentation with UNet </font></strong></center>"
examples = [["examples/50494616.jpg"], ["examples/50494676.jpg"], ["examples/56399783.jpg"],
["examples/56399789.jpg"], ["examples/56399831.jpg"], ["examples/56399959.jpg"],
["examples/56400014.jpg"], ["examples/56400119.jpg"],
["examples/56481903.jpg"], ["examples/70749195.jpg"]]
def run_unetv0(input):
output = predict_model(input, "v0")
normalized_output = np.clip(output, 0, 1)
return normalized_output
def run_unetv1(input):
output = predict_model(input, "v1")
normalized_output = np.clip(output, 0, 1)
return normalized_output
def run_unetv2(input):
output = predict_model(input, "v2")
normalized_output = np.clip(output, 0, 1)
return normalized_output
def run_unetv3(input):
output = predict_model(input, "v3")
normalized_output = np.clip(output, 0, 1)
return normalized_output
input_img_v0 = gr.Image(label="Input", type='numpy')
segm_img_v0 = gr.Image(label="Segmented Image")
input_img_v1 = gr.Image(label="Input", type='numpy')
segm_img_v1 = gr.Image(label="Segmented Image")
input_img_v2 = gr.Image(label="Input", type='numpy')
segm_img_v2 = gr.Image(label="Segmented Image")
input_img_v3 = gr.Image(label="Input", type='numpy')
segm_img_v3 = gr.Image(label="Segmented Image")
with gr.Blocks(title='UNet examples') as demo:
# v0: regular UNet
with gr.Tab("Regular UNet (v0)"):
# display input image and segmented image
with gr.Row(variant="panel"):
with gr.Column(scale=1):
input_img_v0.render()
with gr.Column(scale=1):
segm_img_v0.render()
# submit and clear
with gr.Row():
with gr.Column():
segment_btn_v0 = gr.Button("Run Segmentation", variant='primary')
clear_btn_v0 = gr.Button("Clear", variant="secondary")
# load examples
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[input_img_v0],
outputs=segm_img_v0,
fn=run_unetv0,
cache_examples=False,
examples_per_page=5)
# just a placeholder for second column
with gr.Column():
gr.Markdown("")
segment_btn_v0.click(run_unetv0,
inputs=[
input_img_v0,
],
outputs=segm_img_v0)
# v1: UNet3+
with gr.Tab("UNet3+ (v1)"):
# display input image and segmented image
with gr.Row(variant="panel"):
with gr.Column(scale=1):
input_img_v1.render()
with gr.Column(scale=1):
segm_img_v1.render()
# submit and clear
with gr.Row():
with gr.Column():
segment_btn_v1 = gr.Button("Run Segmentation", variant='primary')
clear_btn_v1 = gr.Button("Clear", variant="secondary")
# load examples
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[input_img_v1],
outputs=segm_img_v1,
fn=run_unetv1,
cache_examples=False,
examples_per_page=5)
# just a placeholder for second column
with gr.Column():
gr.Markdown("")
segment_btn_v1.click(run_unetv1,
inputs=[
input_img_v1,
],
outputs=segm_img_v1)
# v2: UNet3+ with deep supervision
with gr.Tab("UNet3+(v2) with deep supervision"):
# display input image and segmented image
with gr.Row(variant="panel"):
with gr.Column(scale=1):
input_img_v2.render()
with gr.Column(scale=1):
segm_img_v2.render()
# submit and clear
with gr.Row():
with gr.Column():
segment_btn_v2 = gr.Button("Run Segmentation", variant='primary')
clear_btn_v2 = gr.Button("Clear", variant="secondary")
# load examples
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[input_img_v2],
outputs=segm_img_v2,
fn=run_unetv2,
cache_examples=False,
examples_per_page=5)
# just a placeholder for second column
with gr.Column():
gr.Markdown("")
segment_btn_v2.click(run_unetv2,
inputs=[
input_img_v2,
],
outputs=segm_img_v2)
# v3: UNet3+ with deep supervision and cgm
with gr.Tab("UNet3+(v3) with deep supervision and cgm"):
# display input image and segmented image
with gr.Row(variant="panel"):
with gr.Column(scale=1):
input_img_v3.render()
with gr.Column(scale=1):
segm_img_v3.render()
# submit and clear
with gr.Row():
with gr.Column():
segment_btn_v3 = gr.Button("Run Segmentation", variant='primary')
clear_btn_v3 = gr.Button("Clear", variant="secondary")
# load examples
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[input_img_v3],
outputs=segm_img_v3,
fn=run_unetv3,
cache_examples=False,
examples_per_page=5)
# just a placeholder for second column
with gr.Column():
gr.Markdown("")
segment_btn_v3.click(run_unetv3,
inputs=[
input_img_v3,
],
outputs=segm_img_v3)
def clear():
return None, None
clear_btn_v0.click(clear, outputs=[input_img_v0, segm_img_v0])
clear_btn_v1.click(clear, outputs=[input_img_v1, segm_img_v1])
clear_btn_v2.click(clear, outputs=[input_img_v2, segm_img_v2])
clear_btn_v3.click(clear, outputs=[input_img_v3, segm_img_v3])
demo.queue()
demo.launch()
|