File size: 7,039 Bytes
123a5ad
3368fe8
 
 
 
 
 
 
123a5ad
 
3368fe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
from gradio_client import Client
import numpy as np
#import torch
import requests
from PIL import Image
#from torchvision import transforms
from predict_unet import predict_model


title = "<center><strong><font size='8'> Medical Image Segmentation with UNet </font></strong></center>"

examples = [["examples/50494616.jpg"], ["examples/50494676.jpg"], ["examples/56399783.jpg"],
            ["examples/56399789.jpg"], ["examples/56399831.jpg"], ["examples/56399959.jpg"],
            ["examples/56400014.jpg"], ["examples/56400119.jpg"],
            ["examples/56481903.jpg"], ["examples/70749195.jpg"]]

def run_unetv0(input):
    output = predict_model(input, "v0")
    normalized_output = np.clip(output, 0, 1)
    return normalized_output

def run_unetv1(input):
    output = predict_model(input, "v1")
    normalized_output = np.clip(output, 0, 1)
    return normalized_output

def run_unetv2(input):
    output = predict_model(input, "v2")
    normalized_output = np.clip(output, 0, 1)
    return normalized_output

def run_unetv3(input):
    output = predict_model(input, "v3")
    normalized_output = np.clip(output, 0, 1)
    return normalized_output
    

input_img_v0 = gr.Image(label="Input", type='numpy')
segm_img_v0 = gr.Image(label="Segmented Image")

input_img_v1 = gr.Image(label="Input", type='numpy')
segm_img_v1 = gr.Image(label="Segmented Image")

input_img_v2 = gr.Image(label="Input", type='numpy')
segm_img_v2 = gr.Image(label="Segmented Image")

input_img_v3 = gr.Image(label="Input", type='numpy')
segm_img_v3 = gr.Image(label="Segmented Image")


with gr.Blocks(title='UNet examples') as demo:
    # v0: regular UNet
    with gr.Tab("Regular UNet (v0)"):
        # display input image and segmented image
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                input_img_v0.render()

            with gr.Column(scale=1):
                segm_img_v0.render()
        
        # submit and clear
        with gr.Row():
            with gr.Column():
                segment_btn_v0 = gr.Button("Run Segmentation", variant='primary')
                clear_btn_v0 = gr.Button("Clear", variant="secondary")

                # load examples
                gr.Markdown("Try some of the examples below")
                gr.Examples(examples=examples,
                            inputs=[input_img_v0],
                            outputs=segm_img_v0,
                            fn=run_unetv0,
                            cache_examples=False,
                            examples_per_page=5)

            # just a placeholder for second column
            with gr.Column():
                gr.Markdown("")

        segment_btn_v0.click(run_unetv0,
                            inputs=[
                                input_img_v0,
                            ],
                            outputs=segm_img_v0)


    # v1: UNet3+
    with gr.Tab("UNet3+ (v1)"):
        # display input image and segmented image
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                input_img_v1.render()

            with gr.Column(scale=1):
                segm_img_v1.render()
        
        # submit and clear
        with gr.Row():
            with gr.Column():
                segment_btn_v1 = gr.Button("Run Segmentation", variant='primary')
                clear_btn_v1 = gr.Button("Clear", variant="secondary")

                # load examples
                gr.Markdown("Try some of the examples below")
                gr.Examples(examples=examples,
                            inputs=[input_img_v1],
                            outputs=segm_img_v1,
                            fn=run_unetv1,
                            cache_examples=False,
                            examples_per_page=5)

            # just a placeholder for second column
            with gr.Column():
                gr.Markdown("")

        segment_btn_v1.click(run_unetv1,
                            inputs=[
                                input_img_v1,
                            ],
                            outputs=segm_img_v1)

    
    # v2: UNet3+ with deep supervision
    with gr.Tab("UNet3+(v2) with deep supervision"):
        # display input image and segmented image
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                input_img_v2.render()

            with gr.Column(scale=1):
                segm_img_v2.render()
        
        # submit and clear
        with gr.Row():
            with gr.Column():
                segment_btn_v2 = gr.Button("Run Segmentation", variant='primary')
                clear_btn_v2 = gr.Button("Clear", variant="secondary")

                # load examples
                gr.Markdown("Try some of the examples below")
                gr.Examples(examples=examples,
                            inputs=[input_img_v2],
                            outputs=segm_img_v2,
                            fn=run_unetv2,
                            cache_examples=False,
                            examples_per_page=5)

            # just a placeholder for second column
            with gr.Column():
                gr.Markdown("")

        segment_btn_v2.click(run_unetv2,
                            inputs=[
                                input_img_v2,
                            ],
                            outputs=segm_img_v2)


    # v3: UNet3+ with deep supervision and cgm
    with gr.Tab("UNet3+(v3) with deep supervision and cgm"):
        # display input image and segmented image
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                input_img_v3.render()

            with gr.Column(scale=1):
                segm_img_v3.render()
        
        # submit and clear
        with gr.Row():
            with gr.Column():
                segment_btn_v3 = gr.Button("Run Segmentation", variant='primary')
                clear_btn_v3 = gr.Button("Clear", variant="secondary")

                # load examples
                gr.Markdown("Try some of the examples below")
                gr.Examples(examples=examples,
                            inputs=[input_img_v3],
                            outputs=segm_img_v3,
                            fn=run_unetv3,
                            cache_examples=False,
                            examples_per_page=5)

            # just a placeholder for second column
            with gr.Column():
                gr.Markdown("")

        segment_btn_v3.click(run_unetv3,
                            inputs=[
                                input_img_v3,
                            ],
                            outputs=segm_img_v3)


    def clear():
        return None, None

    clear_btn_v0.click(clear, outputs=[input_img_v0, segm_img_v0])
    clear_btn_v1.click(clear, outputs=[input_img_v1, segm_img_v1])
    clear_btn_v2.click(clear, outputs=[input_img_v2, segm_img_v2])
    clear_btn_v3.click(clear, outputs=[input_img_v3, segm_img_v3])


demo.queue()
demo.launch()