File size: 3,815 Bytes
6bf4d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Build U-Net model
import tensorflow as tf
import tensorflow.keras.layers as layers
import tensorflow.keras.models as models
import tensorflow.keras.metrics as metrics
#from keras import backend as keras


def unet(pretrained_weights = None, input_size = (256,256,1)):
    inputs = layers.Input(input_size)
    conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
    conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
    pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
    conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
    pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
    conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
    pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3)
    
    conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
    conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
    drop4 = layers.Dropout(0.5)(conv4)
    pool4 = layers.MaxPooling2D(pool_size=(2, 2))(drop4)

    conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
    conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
    drop5 = layers.Dropout(0.5)(conv5)

    up6 = layers.Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(drop5))
    merge6 = layers.concatenate([drop4,up6], axis = 3)
    conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
    conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

    up7 = layers.Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv6))
    merge7 = layers.concatenate([conv3,up7], axis = 3)
    conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
    conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

    up8 = layers.Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv7))
    merge8 = layers.concatenate([conv2,up8], axis = 3)
    conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
    conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

    up9 = layers.Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv8))
    merge9 = layers.concatenate([conv1,up9], axis = 3)
    conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
    conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv9 = layers.Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)

    conv10 = layers.Conv2D(1, 1, activation = 'sigmoid')(conv9)

    model = models.Model(inputs=inputs, outputs=conv10)

    if(pretrained_weights):
        model.load_weights(pretrained_weights)

    return model