Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,15 +10,13 @@ from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipelin
|
|
10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
11 |
|
12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
13 |
-
pipe = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, vae=vae)
|
14 |
-
pipe.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
15 |
-
pipe.set_adapters("lora")
|
16 |
-
pipe.to("cuda")
|
17 |
|
18 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
19 |
refiner.to("cuda")
|
20 |
|
21 |
-
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16)
|
|
|
|
|
22 |
pipe_fast.to("cuda")
|
23 |
|
24 |
help_text = """
|
@@ -100,33 +98,33 @@ def king(type ,
|
|
100 |
steps=int(steps/2.5)
|
101 |
guidance_scale2=(guidance_scale/3)
|
102 |
|
103 |
-
|
104 |
guidance_scale = guidance_scale2,
|
105 |
num_inference_steps = steps,
|
106 |
width = width, height = height,
|
107 |
-
|
108 |
-
|
109 |
-
).images
|
110 |
else:
|
111 |
if enhance_prompt:
|
112 |
print(f"BEFORE: {instruction} ")
|
113 |
instruction = promptifier(instruction)
|
114 |
print(f"AFTER: {instruction} ")
|
115 |
-
|
|
|
|
|
116 |
negative_prompt=negative_prompt,
|
117 |
-
guidance_scale =
|
118 |
num_inference_steps = steps,
|
119 |
width = width, height = height,
|
120 |
-
use_resolution_binning = True,
|
121 |
generator = generator, output_type="latent",
|
122 |
).images
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
return seed, refine
|
131 |
|
132 |
client = InferenceClient()
|
|
|
10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
11 |
|
12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
13 |
|
14 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
15 |
refiner.to("cuda")
|
16 |
|
17 |
+
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae)
|
18 |
+
pipe_fast.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
19 |
+
pipe_fast.set_adapters("lora")
|
20 |
pipe_fast.to("cuda")
|
21 |
|
22 |
help_text = """
|
|
|
98 |
steps=int(steps/2.5)
|
99 |
guidance_scale2=(guidance_scale/3)
|
100 |
|
101 |
+
refine = pipe_fast( prompt = instruction,
|
102 |
guidance_scale = guidance_scale2,
|
103 |
num_inference_steps = steps,
|
104 |
width = width, height = height,
|
105 |
+
generator = generator,
|
106 |
+
).images[0]
|
|
|
107 |
else:
|
108 |
if enhance_prompt:
|
109 |
print(f"BEFORE: {instruction} ")
|
110 |
instruction = promptifier(instruction)
|
111 |
print(f"AFTER: {instruction} ")
|
112 |
+
guidance_scale2=(guidance_scale/2)
|
113 |
+
|
114 |
+
image = pipe_fast( prompt = instruction,
|
115 |
negative_prompt=negative_prompt,
|
116 |
+
guidance_scale = guidance_scale2,
|
117 |
num_inference_steps = steps,
|
118 |
width = width, height = height,
|
|
|
119 |
generator = generator, output_type="latent",
|
120 |
).images
|
121 |
|
122 |
+
refine = refiner( prompt=instruction,
|
123 |
+
negative_prompt = negative_prompt,
|
124 |
+
guidance_scale = guidance_scale,
|
125 |
+
num_inference_steps= steps,
|
126 |
+
image=image, generator=generator,
|
127 |
+
).images[0]
|
128 |
return seed, refine
|
129 |
|
130 |
client = InferenceClient()
|