KingNish commited on
Commit
f9d6cde
Β·
verified Β·
1 Parent(s): 755a3d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -18,20 +18,17 @@ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype
18
  repo = "fluently/Fluently-XL-Final"
19
 
20
  pipe_best = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
21
- pipe_best.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_best.scheduler.config)
22
  pipe_best.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
23
  pipe_best.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
24
  pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.7])
25
  pipe_best.to("cuda")
26
 
27
  pipe_3D = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
28
- pipe_3D.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_3D.scheduler.config)
29
  pipe_3D.load_lora_weights("artificialguybr/3DRedmond-V1", weight_name="3DRedmond-3DRenderStyle-3DRenderAF.safetensors", adapter_name="3D")
30
  pipe_3D.set_adapters(["3D"])
31
  pipe_3D.to("cuda")
32
 
33
  pipe_logo = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
34
- pipe_logo.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_logo.scheduler.config)
35
  pipe_logo.load_lora_weights("artificialguybr/LogoRedmond-LogoLoraForSDXL", weight_name="LogoRedmond_LogoRedAF.safetensors", adapter_name="logo")
36
  pipe_logo.set_adapters(["logo"])
37
  pipe_logo.to("cuda")
@@ -104,12 +101,12 @@ def king(type ,
104
  generator = torch.Generator().manual_seed(seed)
105
  if style=="3D":
106
  instruction = f"3DRenderAF, 3D Render, {instruction}"
107
- image = pipe_3D( prompt = instruction, guidance_scale = 4, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
108
  elif style=="Logo":
109
  instruction = f"LogoRedAF, {instruction}"
110
- image = pipe_logo( prompt = instruction, guidance_scale = 4, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
111
  else:
112
- image = pipe_best( prompt = instruction, guidance_scale = 4, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
113
  return seed, image
114
 
115
  client = InferenceClient()
 
18
  repo = "fluently/Fluently-XL-Final"
19
 
20
  pipe_best = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
 
21
  pipe_best.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
22
  pipe_best.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
23
  pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.7])
24
  pipe_best.to("cuda")
25
 
26
  pipe_3D = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
 
27
  pipe_3D.load_lora_weights("artificialguybr/3DRedmond-V1", weight_name="3DRedmond-3DRenderStyle-3DRenderAF.safetensors", adapter_name="3D")
28
  pipe_3D.set_adapters(["3D"])
29
  pipe_3D.to("cuda")
30
 
31
  pipe_logo = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
 
32
  pipe_logo.load_lora_weights("artificialguybr/LogoRedmond-LogoLoraForSDXL", weight_name="LogoRedmond_LogoRedAF.safetensors", adapter_name="logo")
33
  pipe_logo.set_adapters(["logo"])
34
  pipe_logo.to("cuda")
 
101
  generator = torch.Generator().manual_seed(seed)
102
  if style=="3D":
103
  instruction = f"3DRenderAF, 3D Render, {instruction}"
104
+ image = pipe_3D( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
105
  elif style=="Logo":
106
  instruction = f"LogoRedAF, {instruction}"
107
+ image = pipe_logo( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
108
  else:
109
+ image = pipe_best( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
110
  return seed, image
111
 
112
  client = InferenceClient()