Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,19 +6,14 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
-
from diffusers import
|
10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
15 |
-
pipe.to("cuda")
|
16 |
|
17 |
-
|
18 |
-
refiner.to("cuda")
|
19 |
-
|
20 |
-
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, use_safetensors=True)
|
21 |
-
pipe_fast.to("cuda")
|
22 |
|
23 |
help_text = """
|
24 |
To optimize image results:
|
@@ -51,11 +46,11 @@ pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_
|
|
51 |
pipe_edit.to("cuda")
|
52 |
|
53 |
client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
54 |
-
system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation
|
55 |
|
56 |
def promptifier(prompt):
|
57 |
formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
|
58 |
-
stream = client1.text_generation(formatted_prompt, max_new_tokens=
|
59 |
return stream
|
60 |
|
61 |
# Generator
|
@@ -71,7 +66,6 @@ def king(type ,
|
|
71 |
width: int = 1024,
|
72 |
height: int = 1024,
|
73 |
guidance_scale: float = 6,
|
74 |
-
fast=True,
|
75 |
progress=gr.Progress(track_tqdm=True)
|
76 |
):
|
77 |
if type=="Image Editing" :
|
@@ -102,22 +96,17 @@ def king(type ,
|
|
102 |
print(f"BEFORE: {instruction} ")
|
103 |
instruction = promptifier(instruction)
|
104 |
print(f"AFTER: {instruction} ")
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
guidance_scale = guidance_scale,
|
117 |
-
num_inference_steps = steps,
|
118 |
-
width = width, height = height,
|
119 |
-
generator = generator, output_type="latent",
|
120 |
-
).images
|
121 |
|
122 |
refine = refiner( prompt=instruction,
|
123 |
negative_prompt = negative_prompt,
|
@@ -202,7 +191,6 @@ with gr.Blocks(css=css) as demo:
|
|
202 |
with gr.Row():
|
203 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
|
204 |
enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
|
205 |
-
fast = gr.Checkbox(label="FAST Generation", value=True, scale=0)
|
206 |
|
207 |
with gr.Row():
|
208 |
input_image = gr.Image(label="Image", type='filepath', interactive=True)
|
@@ -255,7 +243,6 @@ with gr.Blocks(css=css) as demo:
|
|
255 |
width,
|
256 |
height,
|
257 |
guidance_scale,
|
258 |
-
fast,
|
259 |
],
|
260 |
outputs=[seed, input_image],
|
261 |
api_name = "image_gen_pro",
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
+
from diffusers import EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline
|
10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
11 |
+
from diffusers import DiffusionPipeline
|
12 |
|
13 |
+
dtype = torch.bfloat16
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
15 |
|
16 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device)
|
|
|
|
|
|
|
|
|
17 |
|
18 |
help_text = """
|
19 |
To optimize image results:
|
|
|
46 |
pipe_edit.to("cuda")
|
47 |
|
48 |
client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
49 |
+
system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better and detailed prompt for Image Generation. \n Ensure the prompt is deatiled, yet descriptive to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. Reply with optimized prompt only.\n<|user|>\n"
|
50 |
|
51 |
def promptifier(prompt):
|
52 |
formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
|
53 |
+
stream = client1.text_generation(formatted_prompt, max_new_tokens=300)
|
54 |
return stream
|
55 |
|
56 |
# Generator
|
|
|
66 |
width: int = 1024,
|
67 |
height: int = 1024,
|
68 |
guidance_scale: float = 6,
|
|
|
69 |
progress=gr.Progress(track_tqdm=True)
|
70 |
):
|
71 |
if type=="Image Editing" :
|
|
|
96 |
print(f"BEFORE: {instruction} ")
|
97 |
instruction = promptifier(instruction)
|
98 |
print(f"AFTER: {instruction} ")
|
99 |
+
|
100 |
+
image = pipe(
|
101 |
+
prompt = instruction,
|
102 |
+
negative_prompt = negative_prompt,
|
103 |
+
width = width,
|
104 |
+
height = height,
|
105 |
+
num_inference_steps = (steps/5),
|
106 |
+
generator = generator,
|
107 |
+
guidance_scale=0.0,
|
108 |
+
output_type="latent"
|
109 |
+
).images
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
refine = refiner( prompt=instruction,
|
112 |
negative_prompt = negative_prompt,
|
|
|
191 |
with gr.Row():
|
192 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
|
193 |
enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
|
|
|
194 |
|
195 |
with gr.Row():
|
196 |
input_image = gr.Image(label="Image", type='filepath', interactive=True)
|
|
|
243 |
width,
|
244 |
height,
|
245 |
guidance_scale,
|
|
|
246 |
],
|
247 |
outputs=[seed, input_image],
|
248 |
api_name = "image_gen_pro",
|