Spaces:
Configuration error
Configuration error
File size: 32,896 Bytes
8d0c7f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Pitch-tracking and tuning estimation"""
import warnings
import numpy as np
import scipy
import numba
from .spectrum import _spectrogram
from . import convert
from .._cache import cache
from .. import util
from .. import sequence
from ..util.exceptions import ParameterError
from numpy.typing import ArrayLike
from typing import Any, Callable, Optional, Tuple, Union
from .._typing import _WindowSpec, _PadMode, _PadModeSTFT
__all__ = ["estimate_tuning", "pitch_tuning", "piptrack", "yin", "pyin"]
def estimate_tuning(
*,
y: Optional[np.ndarray] = None,
sr: float = 22050,
S: Optional[np.ndarray] = None,
n_fft: Optional[int] = 2048,
resolution: float = 0.01,
bins_per_octave: int = 12,
**kwargs: Any,
) -> float:
"""Estimate the tuning of an audio time series or spectrogram input.
Parameters
----------
y : np.ndarray [shape=(..., n)] or None
audio signal. Multi-channel is supported..
sr : number > 0 [scalar]
audio sampling rate of ``y``
S : np.ndarray [shape=(..., d, t)] or None
magnitude or power spectrogram
n_fft : int > 0 [scalar] or None
number of FFT bins to use, if ``y`` is provided.
resolution : float in `(0, 1)`
Resolution of the tuning as a fraction of a bin.
0.01 corresponds to measurements in cents.
bins_per_octave : int > 0 [scalar]
How many frequency bins per octave
**kwargs : additional keyword arguments
Additional arguments passed to `piptrack`
Returns
-------
tuning: float in `[-0.5, 0.5)`
estimated tuning deviation (fractions of a bin).
Note that if multichannel input is provided, a single tuning estimate is provided spanning all
channels.
See Also
--------
piptrack : Pitch tracking by parabolic interpolation
Examples
--------
With time-series input
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> librosa.estimate_tuning(y=y, sr=sr)
-0.08000000000000002
In tenths of a cent
>>> librosa.estimate_tuning(y=y, sr=sr, resolution=1e-3)
-0.016000000000000014
Using spectrogram input
>>> S = np.abs(librosa.stft(y))
>>> librosa.estimate_tuning(S=S, sr=sr)
-0.08000000000000002
Using pass-through arguments to `librosa.piptrack`
>>> librosa.estimate_tuning(y=y, sr=sr, n_fft=8192,
... fmax=librosa.note_to_hz('G#9'))
-0.08000000000000002
"""
pitch, mag = piptrack(y=y, sr=sr, S=S, n_fft=n_fft, **kwargs)
# Only count magnitude where frequency is > 0
pitch_mask = pitch > 0
if pitch_mask.any():
threshold = np.median(mag[pitch_mask])
else:
threshold = 0.0
return pitch_tuning(
pitch[(mag >= threshold) & pitch_mask],
resolution=resolution,
bins_per_octave=bins_per_octave,
)
def pitch_tuning(
frequencies: ArrayLike, *, resolution: float = 0.01, bins_per_octave: int = 12
) -> float:
"""Given a collection of pitches, estimate its tuning offset
(in fractions of a bin) relative to A440=440.0Hz.
Parameters
----------
frequencies : array-like, float
A collection of frequencies detected in the signal.
See `piptrack`
resolution : float in `(0, 1)`
Resolution of the tuning as a fraction of a bin.
0.01 corresponds to cents.
bins_per_octave : int > 0 [scalar]
How many frequency bins per octave
Returns
-------
tuning: float in `[-0.5, 0.5)`
estimated tuning deviation (fractions of a bin)
See Also
--------
estimate_tuning : Estimating tuning from time-series or spectrogram input
Examples
--------
>>> # Generate notes at +25 cents
>>> freqs = librosa.cqt_frequencies(n_bins=24, fmin=55, tuning=0.25)
>>> librosa.pitch_tuning(freqs)
0.25
>>> # Track frequencies from a real spectrogram
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> freqs, times, mags = librosa.reassigned_spectrogram(y, sr=sr,
... fill_nan=True)
>>> # Select out pitches with high energy
>>> freqs = freqs[mags > np.median(mags)]
>>> librosa.pitch_tuning(freqs)
-0.07
"""
frequencies = np.atleast_1d(frequencies)
# Trim out any DC components
frequencies = frequencies[frequencies > 0]
if not np.any(frequencies):
warnings.warn(
"Trying to estimate tuning from empty frequency set.", stacklevel=2
)
return 0.0
# Compute the residual relative to the number of bins
residual = np.mod(bins_per_octave * convert.hz_to_octs(frequencies), 1.0)
# Are we on the wrong side of the semitone?
# A residual of 0.95 is more likely to be a deviation of -0.05
# from the next tone up.
residual[residual >= 0.5] -= 1.0
bins = np.linspace(-0.5, 0.5, int(np.ceil(1.0 / resolution)) + 1)
counts, tuning = np.histogram(residual, bins)
# return the histogram peak
tuning_est: float = tuning[np.argmax(counts)]
return tuning_est
@cache(level=30)
def piptrack(
*,
y: Optional[np.ndarray] = None,
sr: float = 22050,
S: Optional[np.ndarray] = None,
n_fft: Optional[int] = 2048,
hop_length: Optional[int] = None,
fmin: float = 150.0,
fmax: float = 4000.0,
threshold: float = 0.1,
win_length: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
pad_mode: _PadModeSTFT = "constant",
ref: Optional[Union[float, Callable]] = None,
) -> Tuple[np.ndarray, np.ndarray]:
"""Pitch tracking on thresholded parabolically-interpolated STFT.
This implementation uses the parabolic interpolation method described by [#]_.
.. [#] https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html
Parameters
----------
y : np.ndarray [shape=(..., n)] or None
audio signal. Multi-channel is supported..
sr : number > 0 [scalar]
audio sampling rate of ``y``
S : np.ndarray [shape=(..., d, t)] or None
magnitude or power spectrogram
n_fft : int > 0 [scalar] or None
number of FFT bins to use, if ``y`` is provided.
hop_length : int > 0 [scalar] or None
number of samples to hop
threshold : float in `(0, 1)`
A bin in spectrum ``S`` is considered a pitch when it is greater than
``threshold * ref(S)``.
By default, ``ref(S)`` is taken to be ``max(S, axis=0)`` (the maximum value in
each column).
fmin : float > 0 [scalar]
lower frequency cutoff.
fmax : float > 0 [scalar]
upper frequency cutoff.
win_length : int <= n_fft [scalar]
Each frame of audio is windowed by ``window``.
The window will be of length `win_length` and then padded
with zeros to match ``n_fft``.
If unspecified, defaults to ``win_length = n_fft``.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, or number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a vector or array of length ``n_fft``
.. see also:: `filters.get_window`
center : boolean
- If ``True``, the signal ``y`` is padded so that frame
``t`` is centered at ``y[t * hop_length]``.
- If ``False``, then frame ``t`` begins at ``y[t * hop_length]``
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, STFT uses zero-padding.
See also: `np.pad`.
ref : scalar or callable [default=np.max]
If scalar, the reference value against which ``S`` is compared for determining
pitches.
If callable, the reference value is computed as ``ref(S, axis=0)``.
Returns
-------
pitches, magnitudes : np.ndarray [shape=(..., d, t)]
Where ``d`` is the subset of FFT bins within ``fmin`` and ``fmax``.
``pitches[..., f, t]`` contains instantaneous frequency at bin
``f``, time ``t``
``magnitudes[..., f, t]`` contains the corresponding magnitudes.
Both ``pitches`` and ``magnitudes`` take value 0 at bins
of non-maximal magnitude.
Notes
-----
This function caches at level 30.
One of ``S`` or ``y`` must be provided.
If ``S`` is not given, it is computed from ``y`` using
the default parameters of `librosa.stft`.
Examples
--------
Computing pitches from a waveform input
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
Or from a spectrogram input
>>> S = np.abs(librosa.stft(y))
>>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr)
Or with an alternate reference value for pitch detection, where
values above the mean spectral energy in each frame are counted as pitches
>>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr, threshold=1,
... ref=np.mean)
"""
# Check that we received an audio time series or STFT
S, n_fft = _spectrogram(
y=y,
S=S,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=center,
pad_mode=pad_mode,
)
# Make sure we're dealing with magnitudes
S = np.abs(S)
# Truncate to feasible region
fmin = np.maximum(fmin, 0)
fmax = np.minimum(fmax, float(sr) / 2)
fft_freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft)
# Do the parabolic interpolation everywhere,
# then figure out where the peaks are
# then restrict to the feasible range (fmin:fmax)
avg = np.gradient(S, axis=-2)
shift = _parabolic_interpolation(S, axis=-2)
# this will get us the interpolated peak value
dskew = 0.5 * avg * shift
# Pre-allocate output
pitches = np.zeros_like(S)
mags = np.zeros_like(S)
# Clip to the viable frequency range
freq_mask = (fmin <= fft_freqs) & (fft_freqs < fmax)
freq_mask = util.expand_to(freq_mask, ndim=S.ndim, axes=-2)
# Compute the column-wise local max of S after thresholding
# Find the argmax coordinates
if ref is None:
ref = np.max
if callable(ref):
ref_value = threshold * ref(S, axis=-2)
# Reinsert the frequency axis here, in case the callable doesn't
# support keepdims=True
ref_value = np.expand_dims(ref_value, -2)
else:
ref_value = np.abs(ref)
# Store pitch and magnitude
idx = np.nonzero(freq_mask & util.localmax(S * (S > ref_value), axis=-2))
pitches[idx] = (idx[-2] + shift[idx]) * float(sr) / n_fft
mags[idx] = S[idx] + dskew[idx]
return pitches, mags
def _cumulative_mean_normalized_difference(
y_frames: np.ndarray,
frame_length: int,
win_length: int,
min_period: int,
max_period: int,
) -> np.ndarray:
"""Cumulative mean normalized difference function (equation 8 in [#]_)
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
"YIN, a fundamental frequency estimator for speech and music."
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
Parameters
----------
y_frames : np.ndarray [shape=(frame_length, n_frames)]
framed audio time series.
frame_length : int > 0 [scalar]
length of the frames in samples.
win_length : int > 0 [scalar]
length of the window for calculating autocorrelation in samples.
min_period : int > 0 [scalar]
minimum period.
max_period : int > 0 [scalar]
maximum period.
Returns
-------
yin_frames : np.ndarray [shape=(max_period-min_period+1,n_frames)]
Cumulative mean normalized difference function for each frame.
"""
# Autocorrelation.
a = np.fft.rfft(y_frames, frame_length, axis=-2)
b = np.fft.rfft(y_frames[..., win_length:0:-1, :], frame_length, axis=-2)
acf_frames = np.fft.irfft(a * b, frame_length, axis=-2)[..., win_length:, :]
acf_frames[np.abs(acf_frames) < 1e-6] = 0
# Energy terms.
energy_frames = np.cumsum(y_frames**2, axis=-2)
energy_frames = (
energy_frames[..., win_length:, :] - energy_frames[..., :-win_length, :]
)
energy_frames[np.abs(energy_frames) < 1e-6] = 0
# Difference function.
yin_frames = energy_frames[..., :1, :] + energy_frames - 2 * acf_frames
# Cumulative mean normalized difference function.
yin_numerator = yin_frames[..., min_period : max_period + 1, :]
# broadcast this shape to have leading ones
tau_range = util.expand_to(
np.arange(1, max_period + 1), ndim=yin_frames.ndim, axes=-2
)
cumulative_mean = (
np.cumsum(yin_frames[..., 1 : max_period + 1, :], axis=-2) / tau_range
)
yin_denominator = cumulative_mean[..., min_period - 1 : max_period, :]
yin_frames: np.ndarray = yin_numerator / (
yin_denominator + util.tiny(yin_denominator)
)
return yin_frames
@numba.stencil # type: ignore
def _pi_stencil(x: np.ndarray) -> np.ndarray:
"""Stencil to compute local parabolic interpolation"""
a = x[1] + x[-1] - 2 * x[0]
b = (x[1] - x[-1]) / 2
if np.abs(b) >= np.abs(a):
# If this happens, we'll shift by more than 1 bin
# Suppressing types because mypy has no idea about stencils
return 0 # type: ignore
return -b / a # type: ignore
@numba.guvectorize(
["void(float32[:], float32[:])", "void(float64[:], float64[:])"],
"(n)->(n)",
cache=False,
nopython=True,
) # type: ignore
def _pi_wrapper(x: np.ndarray, y: np.ndarray) -> None: # pragma: no cover
"""Vectorized wrapper for the parabolic interpolation stencil"""
y[:] = _pi_stencil(x)
def _parabolic_interpolation(x: np.ndarray, *, axis: int = -2) -> np.ndarray:
"""Piecewise parabolic interpolation for yin and pyin.
Parameters
----------
x : np.ndarray
array to interpolate
axis : int
axis along which to interpolate
Returns
-------
parabolic_shifts : np.ndarray [shape=x.shape]
position of the parabola optima (relative to bin indices)
Note: the shift at bin `n` is determined as 0 if the estimated
optimum is outside the range `[n-1, n+1]`.
"""
# Rotate the target axis to the end
xi = x.swapaxes(-1, axis)
# Allocate the output array and rotate target axis
shifts = np.empty_like(x)
shiftsi = shifts.swapaxes(-1, axis)
# Call the vectorized stencil
_pi_wrapper(xi, shiftsi)
# Handle the edge condition not covered by the stencil
shiftsi[..., -1] = 0
shiftsi[..., 0] = 0
return shifts
def yin(
y: np.ndarray,
*,
fmin: float,
fmax: float,
sr: float = 22050,
frame_length: int = 2048,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
trough_threshold: float = 0.1,
center: bool = True,
pad_mode: _PadMode = "constant",
) -> np.ndarray:
"""Fundamental frequency (F0) estimation using the YIN algorithm.
YIN is an autocorrelation based method for fundamental frequency estimation [#]_.
First, a normalized difference function is computed over short (overlapping) frames of audio.
Next, the first minimum in the difference function below ``trough_threshold`` is selected as
an estimate of the signal's period.
Finally, the estimated period is refined using parabolic interpolation before converting
into the corresponding frequency.
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
"YIN, a fundamental frequency estimator for speech and music."
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
Parameters
----------
y : np.ndarray [shape=(..., n)]
audio time series. Multi-channel is supported..
fmin : number > 0 [scalar]
minimum frequency in Hertz.
The recommended minimum is ``librosa.note_to_hz('C2')`` (~65 Hz)
though lower values may be feasible.
fmax : number > 0 [scalar]
maximum frequency in Hertz.
The recommended maximum is ``librosa.note_to_hz('C7')`` (~2093 Hz)
though higher values may be feasible.
sr : number > 0 [scalar]
sampling rate of ``y`` in Hertz.
frame_length : int > 0 [scalar]
length of the frames in samples.
By default, ``frame_length=2048`` corresponds to a time scale of about 93 ms at
a sampling rate of 22050 Hz.
win_length : None or int > 0 [scalar]
length of the window for calculating autocorrelation in samples.
If ``None``, defaults to ``frame_length // 2``
hop_length : None or int > 0 [scalar]
number of audio samples between adjacent YIN predictions.
If ``None``, defaults to ``frame_length // 4``.
trough_threshold : number > 0 [scalar]
absolute threshold for peak estimation.
center : boolean
If ``True``, the signal `y` is padded so that frame
``D[:, t]`` is centered at `y[t * hop_length]`.
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``.
Defaults to ``True``, which simplifies the alignment of ``D`` onto a
time grid by means of ``librosa.core.frames_to_samples``.
pad_mode : string or function
If ``center=True``, this argument is passed to ``np.pad`` for padding
the edges of the signal ``y``. By default (``pad_mode="constant"``),
``y`` is padded on both sides with zeros.
If ``center=False``, this argument is ignored.
.. see also:: `np.pad`
Returns
-------
f0: np.ndarray [shape=(..., n_frames)]
time series of fundamental frequencies in Hertz.
If multi-channel input is provided, f0 curves are estimated separately for each channel.
See Also
--------
librosa.pyin :
Fundamental frequency (F0) estimation using probabilistic YIN (pYIN).
Examples
--------
Computing a fundamental frequency (F0) curve from an audio input
>>> y = librosa.chirp(fmin=440, fmax=880, duration=5.0)
>>> librosa.yin(y, fmin=440, fmax=880)
array([442.66354675, 441.95299983, 441.58010963, ...,
871.161732 , 873.99001454, 877.04297681])
"""
if fmin is None or fmax is None:
raise ParameterError('both "fmin" and "fmax" must be provided')
# Set the default window length if it is not already specified.
if win_length is None:
win_length = frame_length // 2
if win_length >= frame_length:
raise ParameterError(
f"win_length={win_length} cannot exceed given frame_length={frame_length}"
)
# Set the default hop if it is not already specified.
if hop_length is None:
hop_length = frame_length // 4
# Check that audio is valid.
util.valid_audio(y, mono=False)
# Pad the time series so that frames are centered
if center:
padding = [(0, 0)] * y.ndim
padding[-1] = (frame_length // 2, frame_length // 2)
y = np.pad(y, padding, mode=pad_mode)
# Frame audio.
y_frames = util.frame(y, frame_length=frame_length, hop_length=hop_length)
# Calculate minimum and maximum periods
min_period = max(int(np.floor(sr / fmax)), 1)
max_period = min(int(np.ceil(sr / fmin)), frame_length - win_length - 1)
# Calculate cumulative mean normalized difference function.
yin_frames = _cumulative_mean_normalized_difference(
y_frames, frame_length, win_length, min_period, max_period
)
# Parabolic interpolation.
parabolic_shifts = _parabolic_interpolation(yin_frames)
# Find local minima.
is_trough = util.localmin(yin_frames, axis=-2)
is_trough[..., 0, :] = yin_frames[..., 0, :] < yin_frames[..., 1, :]
# Find minima below peak threshold.
is_threshold_trough = np.logical_and(is_trough, yin_frames < trough_threshold)
# Absolute threshold.
# "The solution we propose is to set an absolute threshold and choose the
# smallest value of tau that gives a minimum of d' deeper than
# this threshold. If none is found, the global minimum is chosen instead."
target_shape = list(yin_frames.shape)
target_shape[-2] = 1
global_min = np.argmin(yin_frames, axis=-2)
yin_period = np.argmax(is_threshold_trough, axis=-2)
global_min = global_min.reshape(target_shape)
yin_period = yin_period.reshape(target_shape)
no_trough_below_threshold = np.all(~is_threshold_trough, axis=-2, keepdims=True)
yin_period[no_trough_below_threshold] = global_min[no_trough_below_threshold]
# Refine peak by parabolic interpolation.
yin_period = (
min_period
+ yin_period
+ np.take_along_axis(parabolic_shifts, yin_period, axis=-2)
)[..., 0, :]
# Convert period to fundamental frequency.
f0: np.ndarray = sr / yin_period
return f0
def pyin(
y: np.ndarray,
*,
fmin: float,
fmax: float,
sr: float = 22050,
frame_length: int = 2048,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
n_thresholds: int = 100,
beta_parameters: Tuple[float, float] = (2, 18),
boltzmann_parameter: float = 2,
resolution: float = 0.1,
max_transition_rate: float = 35.92,
switch_prob: float = 0.01,
no_trough_prob: float = 0.01,
fill_na: Optional[float] = np.nan,
center: bool = True,
pad_mode: _PadMode = "constant",
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Fundamental frequency (F0) estimation using probabilistic YIN (pYIN).
pYIN [#]_ is a modificatin of the YIN algorithm [#]_ for fundamental frequency (F0) estimation.
In the first step of pYIN, F0 candidates and their probabilities are computed using the YIN algorithm.
In the second step, Viterbi decoding is used to estimate the most likely F0 sequence and voicing flags.
.. [#] Mauch, Matthias, and Simon Dixon.
"pYIN: A fundamental frequency estimator using probabilistic threshold distributions."
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014.
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
"YIN, a fundamental frequency estimator for speech and music."
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
Parameters
----------
y : np.ndarray [shape=(..., n)]
audio time series. Multi-channel is supported.
fmin : number > 0 [scalar]
minimum frequency in Hertz.
The recommended minimum is ``librosa.note_to_hz('C2')`` (~65 Hz)
though lower values may be feasible.
fmax : number > 0 [scalar]
maximum frequency in Hertz.
The recommended maximum is ``librosa.note_to_hz('C7')`` (~2093 Hz)
though higher values may be feasible.
sr : number > 0 [scalar]
sampling rate of ``y`` in Hertz.
frame_length : int > 0 [scalar]
length of the frames in samples.
By default, ``frame_length=2048`` corresponds to a time scale of about 93 ms at
a sampling rate of 22050 Hz.
win_length : None or int > 0 [scalar]
length of the window for calculating autocorrelation in samples.
If ``None``, defaults to ``frame_length // 2``
hop_length : None or int > 0 [scalar]
number of audio samples between adjacent pYIN predictions.
If ``None``, defaults to ``frame_length // 4``.
n_thresholds : int > 0 [scalar]
number of thresholds for peak estimation.
beta_parameters : tuple
shape parameters for the beta distribution prior over thresholds.
boltzmann_parameter : number > 0 [scalar]
shape parameter for the Boltzmann distribution prior over troughs.
Larger values will assign more mass to smaller periods.
resolution : float in `(0, 1)`
Resolution of the pitch bins.
0.01 corresponds to cents.
max_transition_rate : float > 0
maximum pitch transition rate in octaves per second.
switch_prob : float in ``(0, 1)``
probability of switching from voiced to unvoiced or vice versa.
no_trough_prob : float in ``(0, 1)``
maximum probability to add to global minimum if no trough is below threshold.
fill_na : None, float, or ``np.nan``
default value for unvoiced frames of ``f0``.
If ``None``, the unvoiced frames will contain a best guess value.
center : boolean
If ``True``, the signal ``y`` is padded so that frame
``D[:, t]`` is centered at ``y[t * hop_length]``.
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``.
Defaults to ``True``, which simplifies the alignment of ``D`` onto a
time grid by means of ``librosa.core.frames_to_samples``.
pad_mode : string or function
If ``center=True``, this argument is passed to ``np.pad`` for padding
the edges of the signal ``y``. By default (``pad_mode="constant"``),
``y`` is padded on both sides with zeros.
If ``center=False``, this argument is ignored.
.. see also:: `np.pad`
Returns
-------
f0: np.ndarray [shape=(..., n_frames)]
time series of fundamental frequencies in Hertz.
voiced_flag: np.ndarray [shape=(..., n_frames)]
time series containing boolean flags indicating whether a frame is voiced or not.
voiced_prob: np.ndarray [shape=(..., n_frames)]
time series containing the probability that a frame is voiced.
.. note:: If multi-channel input is provided, f0 and voicing are estimated separately for each channel.
See Also
--------
librosa.yin :
Fundamental frequency (F0) estimation using the YIN algorithm.
Examples
--------
Computing a fundamental frequency (F0) curve from an audio input
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> f0, voiced_flag, voiced_probs = librosa.pyin(y,
... fmin=librosa.note_to_hz('C2'),
... fmax=librosa.note_to_hz('C7'))
>>> times = librosa.times_like(f0)
Overlay F0 over a spectrogram
>>> import matplotlib.pyplot as plt
>>> D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
>>> fig, ax = plt.subplots()
>>> img = librosa.display.specshow(D, x_axis='time', y_axis='log', ax=ax)
>>> ax.set(title='pYIN fundamental frequency estimation')
>>> fig.colorbar(img, ax=ax, format="%+2.f dB")
>>> ax.plot(times, f0, label='f0', color='cyan', linewidth=3)
>>> ax.legend(loc='upper right')
"""
if fmin is None or fmax is None:
raise ParameterError('both "fmin" and "fmax" must be provided')
# Set the default window length if it is not already specified.
if win_length is None:
win_length = frame_length // 2
if win_length >= frame_length:
raise ParameterError(
f"win_length={win_length} cannot exceed given frame_length={frame_length}"
)
# Set the default hop if it is not already specified.
if hop_length is None:
hop_length = frame_length // 4
# Check that audio is valid.
util.valid_audio(y, mono=False)
# Pad the time series so that frames are centered
if center:
padding = [(0, 0) for _ in y.shape]
padding[-1] = (frame_length // 2, frame_length // 2)
y = np.pad(y, padding, mode=pad_mode)
# Frame audio.
y_frames = util.frame(y, frame_length=frame_length, hop_length=hop_length)
# Calculate minimum and maximum periods
min_period = max(int(np.floor(sr / fmax)), 1)
max_period = min(int(np.ceil(sr / fmin)), frame_length - win_length - 1)
# Calculate cumulative mean normalized difference function.
yin_frames = _cumulative_mean_normalized_difference(
y_frames, frame_length, win_length, min_period, max_period
)
# Parabolic interpolation.
parabolic_shifts = _parabolic_interpolation(yin_frames)
# Find Yin candidates and probabilities.
# The implementation here follows the official pYIN software which
# differs from the method described in the paper.
# 1. Define the prior over the thresholds.
thresholds = np.linspace(0, 1, n_thresholds + 1)
beta_cdf = scipy.stats.beta.cdf(thresholds, beta_parameters[0], beta_parameters[1])
beta_probs = np.diff(beta_cdf)
n_bins_per_semitone = int(np.ceil(1.0 / resolution))
n_pitch_bins = int(np.floor(12 * n_bins_per_semitone * np.log2(fmax / fmin))) + 1
def _helper(a, b):
return __pyin_helper(
a,
b,
sr,
thresholds,
boltzmann_parameter,
beta_probs,
no_trough_prob,
min_period,
fmin,
n_pitch_bins,
n_bins_per_semitone,
)
helper = np.vectorize(_helper, signature="(f,t),(k,t)->(1,d,t),(j,t)")
observation_probs, voiced_prob = helper(yin_frames, parabolic_shifts)
# Construct transition matrix.
max_semitones_per_frame = round(max_transition_rate * 12 * hop_length / sr)
transition_width = max_semitones_per_frame * n_bins_per_semitone + 1
# Construct the within voicing transition probabilities
transition = sequence.transition_local(
n_pitch_bins, transition_width, window="triangle", wrap=False
)
# Include across voicing transition probabilities
t_switch = sequence.transition_loop(2, 1 - switch_prob)
transition = np.kron(t_switch, transition)
p_init = np.zeros(2 * n_pitch_bins)
p_init[n_pitch_bins:] = 1 / n_pitch_bins
states = sequence.viterbi(observation_probs, transition, p_init=p_init)
# Find f0 corresponding to each decoded pitch bin.
freqs = fmin * 2 ** (np.arange(n_pitch_bins) / (12 * n_bins_per_semitone))
f0 = freqs[states % n_pitch_bins]
voiced_flag = states < n_pitch_bins
if fill_na is not None:
f0[~voiced_flag] = fill_na
return f0[..., 0, :], voiced_flag[..., 0, :], voiced_prob[..., 0, :]
def __pyin_helper(
yin_frames,
parabolic_shifts,
sr,
thresholds,
boltzmann_parameter,
beta_probs,
no_trough_prob,
min_period,
fmin,
n_pitch_bins,
n_bins_per_semitone,
):
yin_probs = np.zeros_like(yin_frames)
for i, yin_frame in enumerate(yin_frames.T):
# 2. For each frame find the troughs.
is_trough = util.localmin(yin_frame)
is_trough[0] = yin_frame[0] < yin_frame[1]
(trough_index,) = np.nonzero(is_trough)
if len(trough_index) == 0:
continue
# 3. Find the troughs below each threshold.
# these are the local minima of the frame, could get them directly without the trough index
trough_heights = yin_frame[trough_index]
trough_thresholds = np.less.outer(trough_heights, thresholds[1:])
# 4. Define the prior over the troughs.
# Smaller periods are weighted more.
trough_positions = np.cumsum(trough_thresholds, axis=0) - 1
n_troughs = np.count_nonzero(trough_thresholds, axis=0)
trough_prior = scipy.stats.boltzmann.pmf(
trough_positions, boltzmann_parameter, n_troughs
)
trough_prior[~trough_thresholds] = 0
# 5. For each threshold add probability to global minimum if no trough is below threshold,
# else add probability to each trough below threshold biased by prior.
probs = trough_prior.dot(beta_probs)
global_min = np.argmin(trough_heights)
n_thresholds_below_min = np.count_nonzero(~trough_thresholds[global_min, :])
probs[global_min] += no_trough_prob * np.sum(
beta_probs[:n_thresholds_below_min]
)
yin_probs[trough_index, i] = probs
yin_period, frame_index = np.nonzero(yin_probs)
# Refine peak by parabolic interpolation.
period_candidates = min_period + yin_period
period_candidates = period_candidates + parabolic_shifts[yin_period, frame_index]
f0_candidates = sr / period_candidates
# Find pitch bin corresponding to each f0 candidate.
bin_index = 12 * n_bins_per_semitone * np.log2(f0_candidates / fmin)
bin_index = np.clip(np.round(bin_index), 0, n_pitch_bins).astype(int)
# Observation probabilities.
observation_probs = np.zeros((2 * n_pitch_bins, yin_frames.shape[1]))
observation_probs[bin_index, frame_index] = yin_probs[yin_period, frame_index]
voiced_prob = np.clip(
np.sum(observation_probs[:n_pitch_bins, :], axis=0, keepdims=True), 0, 1
)
observation_probs[n_pitch_bins:, :] = (1 - voiced_prob) / n_pitch_bins
return observation_probs[np.newaxis], voiced_prob
|